Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.

Slides:



Advertisements
Similar presentations
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall, 2014 Room 120 Integrated.
Advertisements

Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Stage Screen Row B Gallagher Theater Row R Lecturer’s desk Row A Row B Row C
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Stage Screen Row B Gallagher Theater Row R Lecturer’s desk Row A Row B Row C
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Lecturer’s desk Physics- atmospheric Sciences (PAS) - Room 201 s c r e e n Row A Row B Row C Row D Row E Row F Row G Row H Row A
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Lecturer’s desk Physics- atmospheric Sciences (PAS) - Room 201 s c r e e n Row A Row B Row C Row D Row E Row F Row G Row H Row A
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Modern Languages Row A Row B Row C Row D Row E Row F Row G Row H Row J Row K Row L Row M
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Lecturer’s desk Physics- atmospheric Sciences (PAS) - Room 201 s c r e e n Row A Row B Row C Row D Row E Row F Row G Row H Row A
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Lecturer’s desk INTEGRATED LEARNING CENTER ILC 120 Screen Row A Row B Row C Row D Row E Row F Row G Row.
Modern Languages Row A Row B Row C Row D Row E Row F Row G Row H Row J Row K Row L Row M
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
BNAD 276: Statistical Inference in Management Spring 2016 Green sheets.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Just one quick favor… Please use your phone or laptop Please take just a minute to complete Course Evaluations online….. Check your for a link or.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2017 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Please hand in Project 4 To your TA.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2017 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Lecturer’s desk Projection Booth Screen Screen Harvill 150 renumbered
Hand in your Homework Assignment.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2018 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
BNAD 276: Statistical Inference in Management Spring 2016
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2016 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2016 Room 150 Harvill.
Lecturer’s desk Projection Booth Screen Screen Harvill 150 renumbered
Lecturer’s desk Projection Booth Screen Screen Harvill 150 renumbered
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Fall 2018 Room 150 Harvill Building 10: :50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Introduction to Statistics for the Social Sciences SBS200 - Lecture Section 001, Spring 2019 Room 150 Harvill Building 9:00 - 9:50 Mondays, Wednesdays.
Presentation transcript:

Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill Building 10: :50 Mondays, Wednesdays & Fridays.

Exam 3 – This past Friday Thanks for your patience and cooperation We should have the grades up by Friday (takes about a week) It went really well!

No Labs this week

No class on Wednesday Happy Holiday!

Logic of hypothesis testing with Correlations Interpreting the Correlations and scatterplots Simple and Multiple Regression Using correlation for predictions r versus r 2 Regression uses the predictor variable (independent) to make predictions about the predicted variable (dependent) Coefficient of correlation is name for “r” Coefficient of determination is name for “r 2 ” (remember it is always positive – no direction info) Standard error of the estimate is our measure of the variability of the dots around the regression line (average deviation of each data point from the regression line – like standard deviation) Coefficient of regression will “b” for each variable (like slope) Over next couple of lectures 11/23/15

Before our next exam (December 7 th ) OpenStax Chapters 1 – 13 (Chapter 12 is emphasized) Plous Chapter 17: Social Influences Chapter 18: Group Judgments and Decisions Schedule of readings

Homework Assignment Go to D2L - Click on “Interactive Online Homework Assignments” Complete Assignment 21: Hypothesis Testing, Correlations Due: Monday, November 30 th

Correlation Correlation: Measure of how two variables co-occur and also can be used for prediction Range between -1 and +1 Range between -1 and +1 The closer to zero the weaker the relationship and the worse the prediction The closer to zero the weaker the relationship and the worse the prediction Positive or negative Positive or negative Remember, We’ll call the correlations “r” Revisit this slide

Positive correlation Positive correlation: as values on one variable go up, so do values for other variable pairs of observations tend to occupy similar relative positions higher scores on one variable tend to co-occur with higher scores on the second variable lower scores on one variable tend to co-occur with lower scores on the second variable scatterplot shows clusters of point from lower left to upper right Remember, Correlation = “r” Revisit this slide

Negative correlation Negative correlation: as values on one variable go up, values for other variable go down pairs of observations tend to occupy dissimilar relative positions higher scores on one variable tend to co-occur with lower scores on the second variable lower scores on one variable tend to co-occur with higher scores on the second variable scatterplot shows clusters of point from upper left to lower right Remember, Correlation = “r” Revisit this slide

Zero correlation as values on one variable go up, values for the other variable go... anywhere pairs of observations tend to occupy seemingly random relative positions scatterplot shows no apparent slope Revisit this slide

Is it possible that they are causally related? Correlation does not imply causation Yes, but the correlational analysis does not answer that question What if it’s a perfect correlation – isn’t that causal? No, it feels more compelling, but is neutral about causality Number of Birthday Cakes Number of Birthdays Remember the birthday cakes! Revisit this slide

Correlation - How do numerical values change? r = r = r = r = 0.61 Revisit this slide

Height of Daughters (inches) Height of Mothers (in) This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). Both axes and values are labeled Both axes have real numbers listed Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Revisit this slide

Height of Daughters (inches) Height of Mothers (in) This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). Both axes and values are labeled Both axes have real numbers listed Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number)

Height of Daughters (inches) Height of Mothers (in) This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). Both axes and values are labeled Both axes have real numbers listed Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Revisit this slide

Height of Daughters (inches) Height of Mothers (in) This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). Both axes and values are labeled Both axes have real numbers listed Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Revisit this slide

Height of Daughters (inches) Height of Mothers (in) This shows the strong positive (r = +0.8) relationship between the heights of daughters (in inches) with heights of their mothers (in inches). Both axes and values are labeled Both axes have real numbers listed Variable name is listed clearly Description includes: Both variables Strength (weak,moderate,strong) Direction (positive, negative) Estimated value (actual number) Revisit this slide Statistically significant p < 0.05 Reject the null hypothesis

Finding a statistically significant correlation The result is “statistically significant” if: the observed correlation is larger than the critical correlation we want our r to be big if we want it to be significantly different from zero!! (either negative or positive but just far away from zero) the p value is less than 0.05 (which is our alpha) we want our “p” to be small!! we reject the null hypothesis then we have support for our alternative hypothesis

Five steps to hypothesis testing Step 1: Identify the research problem (hypothesis) Describe the null and alternative hypotheses Step 2: Decision rule Alpha level? ( α =.05 or.01)? Step 3: Calculations Step 4: Make decision whether or not to reject null hypothesis If observed r is bigger than critical r then reject null Step 5: Conclusion - tie findings back in to research problem Critical statistic (e.g. critical r) value from table? For correlation null is that r = 0 (no relationship) Degrees of Freedom = (n – 2) df = # pairs - 2

Five steps to hypothesis testing Problem 1 Is there a relationship between the: Price Square Feet We measured 150 homes recently sold

Five steps to hypothesis testing Step 1: Identify the research problem (hypothesis) Describe the null and alternative hypotheses Step 2: Decision rule – find critical r (from table) Alpha level? ( α =.05) null is that there is no relationship (r = 0.0) Degrees of Freedom = (n – 2) df = # pairs - 2 Is there a relationship between the cost of a home and the size of the home alternative is that there is a relationship (r ≠ 0.0) 150 pairs – 2 = 148 pairs

Critical r value from table df = # pairs - 2 df = 148 pairs α =.05 Critical value r (148) = 0.195

Five steps to hypothesis testing Step 3: Calculations

Five steps to hypothesis testing Step 3: Calculations

Five steps to hypothesis testing Step 3: Calculations Step 4: Make decision whether or not to reject null hypothesis If observed r is bigger than critical r then reject null r = Critical value r (148) = Observed correlation r (148) = Yes we reject the null > 0.195

Conclusion: Yes we reject the null. The observed r is bigger than critical r (0.727 > 0.195) Yes, this is significantly different than zero – something going on These data suggest a strong positive correlation between home prices and home size. This correlation was large enough to reach significance, r(148) = 0.73; p < 0.05

Finding a statistically significant correlation The result is “statistically significant” if: the observed correlation is larger than the critical correlation we want our r to be big if we want it to be significantly different from zero!! (either negative or positive but just far away from zero) the p value is less than 0.05 (which is our alpha) we want our “p” to be small!! we reject the null hypothesis then we have support for our alternative hypothesis

Correlation matrices Correlation matrix: Table showing correlations for all possible pairs of variables 1.0** EducationAgeIQIncome IQ Age Education Income 1.0** 0.65** 0.52* 0.27* 0.41* 0.38* * p < 0.05 ** p < 0.01 Remember, Correlation = “r”

Correlation matrices Correlation matrix: Table showing correlations for all possible pairs of variables EducationAgeIQIncome IQ Age Education Income 0.65** 0.52* 0.27* 0.41*0.38* * p < 0.05 ** p < 0.01

Finding a statistically significant correlation The result is “statistically significant” if: the observed correlation is larger than the critical correlation we want our r to be big if we want it to be significantly different from zero!! (either negative or positive but just far away from zero) the p value is less than 0.05 (which is our alpha) we want our “p” to be small!! we reject the null hypothesis then we have support for our alternative hypothesis