The vertical structure of the Galactic Halo Carla Cacciari, Angela Bragaglia - INAF OA Bologna Tom Kinman - NOAO Alberto Buzzoni - INAF TNG Alessandro.

Slides:



Advertisements
Similar presentations
Dark Matter in Dwarf Galaxies
Advertisements

An Abundance Spread in the Bootes I Dwarf Spheroidal Galaxy? John E. Norris The Australian National University Gerard Gilmore University of Cambridge R.F.G.
Astronomical Distances or Measuring the Universe The Problems by Rastorguev Alexey, professor of the Moscow State University and Sternberg Astronomical.
The Age-Metallicity-Velocity relation in the nearby disk Borja Anguiano Astrophysikalisches Institut Potsdam (AIP) K. Freeman (ANU), E. Wylie de Boer (ANU),
基于 LAMOST 巡天数据的大样 本 M 巨星搜寻和分类 钟靖 中国科学院上海天文台. M giants Red : surface temperature lower than 4000K Luminous: M J from to mag (Covey et al.2007)
Sagittarius debris in SDSS stripe 82 Zhu Ling ( 朱玲 ) & Martin. C. Smith Center for Astrophysics, Tsinghua university KIAA at Peking University.
Stellar Astrophysics: Things That Are Too Hard for Keck Judy Cohen (Caltech)+ Evan Kirby, the 0Z team and Branimir Sesar Astronomy in the TMT Era Tokyo,
Unveiling the formation of the Galactic disks and Andromeda halo with WFMOS Masashi Chiba (Tohoku University, Sendai)
Breaking tidal stream degeneracies with LAMOST Jorge Peñarrubia (IoA) Cambridge 2nd December 08.
The Milky Way PHYS390 Astrophysics Professor Lee Carkner Lecture 19.
Open Clusters and Galactic Disk Observations with LAMOST Li CHEN, Jinliang HOU Shanghai Astronomical Observatory, CAS KIAA/PKU-IoA Workshop.
Nuno C. Santos Cool Stars 13 - Hamburg, Germany - July2004 Spectroscopic characteristics of planet-host stars and their planets Nuno C. Santos (Observatory.
The Galaxy as seen by RAVE L. Veltz, O. Bienaymé & A. Just.
The Milky Way Galaxy James Binney Oxford University.
M. Shao - 1 SIM Space Interferometry Mission A NASA Origins Mission SIM GRID.
GALACTIC STRUCTURE, EVOLUTION AND MERGER REMNANTS The Role that Astrometry Plays in Understanding the Kinematical Structure of the Galaxy Dana I. Dinescu.
A Galactic halo road map The halo stars : where, whither, whence? Chris Thom, Jyrki Hänninen, Johan Holmberg, Chris Flynn Tuorla Observatory Swinburne.
Galaxy Formation and Evolution Galactic Archaeology Chris Brook Modulo 15 Room 509
„We are not talking about cosmology...“ (A. Sozzetti)
Galactic Stellar Population Structure and kinematics Alessandro Spagna Osservatorio Astronomico di Torino 26 Febbraio 2002.
The Nature of the Halo of the Galaxy as Revealed by SDSS/SEGUE Timothy C. Beers Dept. of Physics & Astronomy and JINA: Joint Institute for Nuclear Astrophysics.
Ken Freeman Lecture 3 Chemical evolution of the thin disk More on the thick disk.
IAU General Assembly 2009 Symposium Daniela Carollo Macquarie University Research Centre in Astronomy, Astrophysics & Astrophotonics Department of Physics.
The Dual Origin of a Simulated Milky Way Halo Adi Zolotov (N.Y.U.), Beth Willman (Haverford), Fabio Governato, Chris Brook (University of Washington, Seattle),
The Metal-Poor Halo of the Andromeda Spiral Galaxy Jason Kalirai (University of California at Santa Cruz) Hubble Fellows Symposium, Baltimore MD April.
Σπειροειδείς γαλαξίες
 Students will be able to determine the size and shape of our galaxy.  Students will be able to distinguish the different kinds of variable stars. 
The Microlensing Event Rate and Optical Depth Toward the Galactic Bulge from MOA-II Takahiro Sumi (Osaka University)
Astrometry & the Yale/WIYN ODI Survey. Potential astrometric projects Local luminosity function (van Altena, et al.) obtain  ≤ 0.10 parallaxes to 150.
Surveys and Catalogs Summary: What is a survey? What surveys can do? Survey keywords (completeness, area, mag.limit, …) Type of surveys Survey among the.
The Nature of Galaxies Chapter 17. Other Galaxies External to Milky Way –established by Edwin Hubble –used Cepheid variables to measure distance M31 (Andromeda.
High Precision Astrometry and Parallax from Spatial Scanning Part 2 Adam Riess and Stefano Casertano.
th EVN Symposium 1 Parallax measurements of the Mira-type star UX Cygni with phase-referencing VLBI 8th European VLBI Network Symposium.
Gyöngyi Kerekes Eötvös Lóránd University, Budapest MAGPOP 2008, Paris István Csabai László Dobos Márton Trencséni.
Diaspora in Cercetarea Stiintifica Bucuresti, Sept The Milky Way and its Satellite System in 3D Velocity Space: Its Place in the Current Cosmological.
Parallax Luminosity and mass functions - a few basic facts Kinematics of the solar neighborhood Asymmetric drift Thin disk, thick disk Open and globular.
Globular Cluster and Satellite Orbits: 2008 Status Dana Casetti-Dinescu - Wesleyan and Yale.
次世代位置天文衛星による 銀河系ポテンシャル測定 T. Sumi (Nagoya STE) T. Sumi (Nagoya STE) K.V. Johnston (Columbia) K.V. Johnston (Columbia) S. Tremaine (IAS) S. Tremaine (IAS)
Cosmology and extragalactic astronomy Mat Page Mullard Space Science Lab, UCL 5. The cosmic distance ladder.
Galactic structure and star counts Du cuihua BATC meeting, NAOC.
Metallicity and age of selected nearby G-K Giants L. Pasquini (ESO) M. Doellinger (ESO-LMU) J. Setiawan (MPIA) A. Hatzes (TLS), A. Weiss (MPA), O. von.
The contribution of the Sgr dSph to the globular Cluster System of the Milky Way Recovery of the original conditions of the Sgr dSph Michele Bellazzini.
Galactic Archaeology: The Lowest Metallicity Stars Timothy C. Beers Department of Physics & Astronomy Michigan State University & JINA: Joint Institute.
Problem. What is the distance to the star Spica (α Virginis), which has a measured parallax according to Hipparcos of π abs = ±0.86 mas? Solution.
Galactic studies with GSC-II GSC-II Annual Meeting Barolo, Italy, October 2001 Alessandro Spagna Osservatorio Astronomico di Torino.
Xiangxiang Xue Hans-Walter Rix, G. Zhao, P. Re Fiorentin, T. Naab, M. Steinmetz, E. F. Bell, F. C. van den Bosch, T. C. Beers, R. Wilhelm, Y. S. Lee, C.
ASTR112 The Galaxy Lecture 4 Prof. John Hearnshaw 7. Globular clusters 8. Galactic rotation 8.1 From halo stars 8.2 From disk stars – Oort’s constant,
Milky Way: Galactic Structure and Dynamics Milky Way has spiral structure Galactic Bulge surrounds the Center Powerful radio source Sagittarius A at Center.
Dark Matter in the Milky Way - how to find it using Gaia and other surveys Paul McMillan Surveys For All, 1st February 2016.
Pisa, 4 May 2009 Alessandro Spagna A new kinematic survey (from GSC-II and SDSS-DR7) to study the stellar populations of the Milky Way Alessandro Spagna.
The nearby strongly reddened open cluster Stock2. A new study based on accurate proper motions and 2MASS photometry A. Spagna, F. Cossu, M.G. Lattanzi,
1 VLT kinematics for Omega Centauri : Further support for a central BH E. Noyola et al. 2010, ApJ, 719, L Jun 30 (Thu) Sang Chul KIM ( 김상철 )
SEGUE Target Selection on-going SEGUE observations.
Parallax Luminosity and mass functions - a few basic facts Kinematics of the solar neighborhood Asymmetric drift Thin disk, thick disk Open and globular.
Galactic Structure and Near-field Cosmology via Astrometry with ODI Dana Casetti, Terry Girard, Bill van Altena - Yale Orbits of MW: satellites satellites.
Black Holes in Globular Clusters Karl Gebhardt (UT)
Making action-angle disc models for Gaia Paul McMillan Lund Observatory Collaborators: J. Binney, T. Piffl, J. Sanders.
Gaia ITNG2013 School, Tenerife Ken Freeman, Lecture 4: the stellar halo September 2013.
ASTR112 The Galaxy Lecture 5 Prof. John Hearnshaw 8. Galactic rotation 8.3 Rotation from HI and CO clouds 8.4 Best rotation curve from combined data 9.
The prolate shape of the Galactic halo Amina Helmi Kapteyn Astronomical Institute.
An Abundance Spread in the Bootes I Dwarf Spheroidal Galaxy? John E. Norris The Australian National University Gerard Gilmore University of Cambridge R.F.G.
Simulated black hole picture
Modern cosmology 1: The Hubble Constant
© 2017 Pearson Education, Inc.
An ACS High-latitude Survey
The Milky Way Galaxy 1/30/03.
Learning about first galaxies using large surveys
AY202a Galaxies & Dynamics Lecture 3: Galaxy Characteristics
Gaia Tomaž Zwitter Gaia: > 1.1 billion objects (V ≤ 20.9),
Modeling the Extended Structure of Dwarf Spheroidals (Carina, Leo I)
Presentation transcript:

The vertical structure of the Galactic Halo Carla Cacciari, Angela Bragaglia - INAF OA Bologna Tom Kinman - NOAO Alberto Buzzoni - INAF TNG Alessandro Spagna - INAF OA Torino

What is a good halo tracer?  1960 ’ s : RR Lyraes (Kinman  Co.) • ~1975 : concerns on HB structure high prop.mot. subdwarfs (Carney  Co.) K giants (Freeman  Co.)  1990 ’ s : surveys for metal-poor stars (PSB, KSK) HB stars (Kinamn  Co., Morrison  Co.)  2000 ’ s : about everything suitable, but mostly giants, subgiants, MS-TO (Beers  Co., Gilmore  Co.)

Selection criteria: rotation, orbit eccentricity? NO (bias on kinematics) metallicity? Better, BUT … a) high-res spectroscopy of Halo stars restricted to nearby stars b) possible contamination from MW Thick Disk (up to 30  for [Fe/H]  -1.6 (Beers et al. 2002)  not easy to distinguish Halo from Disk in solar neighb.  BHB and RR Lyr ’ s are relatively unanbiguous Halo indicators, they are bright and can be observed at large distances  Thick disk  Halo Total space motion (km/s) Fulbright 2002, AJ, 123, 404 Problem: how to define local Halo stars ?

Halo rotation from nearby stars (Z  2 kpc) : Nr.Stars Type  RV  reference 162 RRLyr -210  12 Layden et al. 1996, AJ, 112, RRLyr -219  10 Martin  Morrison 1998, AJ, 116, 1724 Note that other estimates based on RRLyr, subdwarfs, K giants (e.g. Chiba  Yoshi 1998, Carney et al. 1996, 1999, Chiba  Beers 2000) may have varying amounts of disk included RV (hel) = -219  10 km/s Older data gave rotation slightly prograde

Halo rotation from distant stars (observed at Z  5 kpc): Nr.Stars Type  RV  reference 21 metal-poor sd -271  16 Majewski 1992, ApJS, 78, 87 Majewski et al. 1996, ApJ, 459, L73 Other estimates, based on metal-poor dwarf and subdwarf stars with Zmax  4-5 kpc calculated from orbital parameters, give: prograde (Carney 1999) zero (Chiba  Beers 2000) rotation retrograde (Gilmore et al. 2002) Is the high halo in retrograde rotation ?

Our sample of RRLyr and BHB within 10  from NGP 73 RRLyr, 87 BHB V  12.0 – 16.5 i.e., d(Sun) = 2-15 kpc Z  2 – 12 kpc above Gal. plane RVs already available for 35 BHB and 18 RRLyr Present preliminary results based on less than 50  of total sample

Data needed to get space velocities UVW Identification as halo objects  BHB (Case, Beers) : uBV  RRLyr (GCVS, var. BHB, ROTSE) : light curves Absolute magnitudes (i.e. distances)  BHB : Mv vs (B-V) from Preston et al. (1991)  RRLyr : luminosity vs [Fe/H]; Fourier analysis (E(B-V) from Schlegel et al. 1998) Proper motions  GSC2 (Spagna et al., unpubl.) ; and others Radial velocities and [Fe/H]  low-res spectra at KPNO-4m and TNG-LRS

FHB Kinman, Suntzeff, Kraft 1994 Preston, Schectman, Beers 1991 BHB identification Mv

RRLyr Absolute magnitude Mv with two compatible scales: a.From [Fe/H] Mv=0.23 [Fe/H] (Cacciari 2002, mean of several recent determinations) •From Fourier components Mv= LogP – A A (Kovacs constant by Kinman from Fourier analysis of RRLyr – Mv=0.61, Benedict et al. 2002) Mean Mv for the 18 RRLyr completely studied: 0.584

Proper motions: GSC2 proper motions, unpublished, derived as described in Spagna et al (1996, A  A, 311, 758), adjusted to give zero pm for galaxies Formal rms errors  3 mas/yr Systematic errors (from pm of 42 QSO at NGP)  25 km/s at 5 kpc STARS

LRS – TNG : observations of BHB  RR Lyr: 2001 to 2003 Feb. 2001

Results: Halo space velocities U V W Adding BHB and RRLyr we obtain (Johnson  Soderblom 1987): U = - 10  26 (  =146 km/s) - 32 stars V = -283  18 (  =120 km/s) - 43 stars W = -31  15 (  = 86 km/s) - 32 stars Compare with sample of 84 local RRLyr (Martin  Morrison 1998): U= -1  26 (  = 193 km/s) V= -210  10 (  = 91 km/s) W= -5  10 (  = 96 km/s) RETROGRADE ?

Directions mapped: Ra,Dec l,b Halo rot. (V) Note NGP 12:50,  ,  km/s SGP 00:50, ,  km/s Kinman, prel. result - 10:50, ,  33 retrogr. Gilmore et al. - 04:00, ,  45 retrogr Gilmore, Wyse, Norris 2002: retrograde halo stream detected as peak in RV distrib. Kinman: Halo stars isolated from a sample of BMP stars (Preston et al. 1994), with available RVs and USNO pm.

CONCLUSIONS  Likely halo stars show distinct retrograde rotation at Z  5 kpc in the direction of the NGP (this agrees with Majewski et al. and Gilmore et al. results)  Streaming motions may be present, and to disentangle from average motion better statistic needed (TNG obs. being taken)  Systematic effects in proper motions (and for non-HB stars in absolute magnitudes too) can be critical  Most precise proper motions: GSC2 … but Yale/Lick/USNO can be used (no systematic errors) Needed: other directions to check results (e.g. Anticenter)