Root Locus. Closed-loop control system with a variable parameter K.

Slides:



Advertisements
Similar presentations
Root Locus Analysis (2) Hany Ferdinando Dept. of Electrical Eng. Petra Christian University.
Advertisements

Root Locus Analysis (1) Hany Ferdinando Dept. of Electrical Eng. Petra Christian University.
Figure 8.1 a. Closed- loop system; b. equivalent transfer function
Chapter 10: Frequency Response Techniques 1 ©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e Chapter 10 Frequency Response Techniques.
Frequency Response. Polar plot for RC filter.
1 سیستمهای کنترل خطی پاییز 1389 بسم ا... الرحمن الرحيم دکتر حسين بلندي - دکتر سید مجید اسما عیل زاده.
Nise/Control Systems Engineering, 3/e
Control Systems Engineering, Fourth Edition by Norman S. Nise Copyright © 2004 by John Wiley & Sons. All rights reserved. Figure 9.1 a. Sample root locus,
Chapter 8 Root Locus <<<4.1>>>
Chapter 8 Root Locus and Magnitude-phase Representation
1 Modern Control Theory Digital Control Lecture 4.
PD Controller 1.Find the steady-state output due to unit-step r d. 2.Find the steady-state output due to unit-step input (with r d =0)
What is Root Locus ? The characteristic equation of the closed-loop system is 1 + K G(s) = 0 The root locus is essentially the trajectories of roots of.
Chapter 7: The Root Locus Method In the preceding chapters we discussed how the performance of a feedback system can be described in terms of the location.
1 Modern Control Theory Digital Control Lecture 4 By Kirsten Mølgaard Nielsen Based on notes from Jesper Sandberg Thomsen.
Review Automatic Control
f(t) m x(t) fd(t) LINEAR CONTROL C (Ns/m) k (N/m)
Automatic control by meiling CHEN1 Lesson 9 Root locus Automatic control 2. Analysis.
The Root Locus Analysis Eng R. L. Nkumbwa MSc, MBA, BEng, REng. Copperbelt University.
Feedback Control System THE ROOT-LOCUS DESIGN METHOD Dr.-Ing. Erwin Sitompul Chapter 5
Properties of Root Locus Lesson Objectives : After finish this lesson, students will be able to  be aware of the control system problem  be aware of.
NUAA-Control System Engineering
Chapter 6: Root Locus. Algebra/calculus review items Rational functions Limits of rational functions Polynomial long division Binomial theorem.
Chapter 6: Root Locus. Basic RL Facts:  Consider standard negative gain unity feedback system  T R (s) = L(s)/[1+L(s)], S(s) = 1/[1+L(s)], L=G C G,
Ch6 The Root Locus Method. Main content §The Root Locus Concept §The Root Locus Procedure §Generalized root locus or Parameter RL §Parameter design by.
ME375 Handouts - Spring 2002 Root Locus Method.
Automatic Control Systems
Nise/Control Systems Engineering, 3/e
1 Chap 6 The Compensation of the linear control systems P553.
Chapter 5: Root Locus Nov. 8, Key conditions for Plotting Root Locus Given open-loop transfer function G k (s) Characteristic equation Magnitude.
Modern Control Systems (MCS) Dr. Imtiaz Hussain Assistant Professor URL :
自动控制原理 西南交通大学电气工程学院 朱英华 (Catherine) The Principle of Automatic Control.
Biomedical Control Systems (BCS) Module Leader: Dr Muhammad Arif muhammadarif Batch: 10 BM Year: 3 rd Term: 2 nd Credit Hours (Theory):
Lec 9. Root Locus Analysis I From last lecture, the locations of the closed loop poles have important implication in –Stability –Transient behavior –Steady.
Lec 10. Root Locus Analysis II
Control Theory Root locus
INC 341PT & BP INC341 Root Locus (Continue) Lecture 8.
Review. Feedback Terminology In Block diagrams, we use not the time domain variables, but their Laplace Transforms. Always denote Transforms by (s)!
The root locus technique 1.Obtain closed-loop TF and char eq d(s) = 0 2.Rearrange d(s) by grouping terms proportional to parameter of interest, and those.
Modern Control System EKT 308 Aspects of State Equation & Root Locus Method.
Modern Control System EKT 308
Steady-state tracking & sys. types G(s) C(s) + - r(s) e y(s) plant controller.
Chapter 5: Root Locus Nov , Two Conditions for Plotting Root Locus Given open-loop transfer function G k (s) Characteristic equation Magnitude.
Chapter 6 Root-Locus Analysis 6.1 Introduction - In some systems simple gain adjustment may move the closed- loop poles to desired locations. Then the.
Lecture 18: Root Locus Basics
Lecture 9 Feedback Control Systems President UniversityErwin SitompulFCS 9/1 Dr.-Ing. Erwin Sitompul President University
Root Locus Techniques (Sketching Method) Date: 25 th September 2008 Prepared by: Megat Syahirul Amin bin Megat Ali
Dr. Tamer Samy Gaafar Automatic Control Theory CSE 322 Lec. 11 Root Locus.
Modern Control System EKT 308 Root Locus Method (contd…)
Exercise 1 (Root Locus) Sketch the root locus for the system shown in Figure K 1 (
Modern Control System EKT 308
Prof. Wahied Gharieb Ali Abdelaal
OBJECTIVE  Determination of root from the characteristic equation by using graphical solution.  Rules on sketching the root locus.  Analysis of closed-loop.
7.1 Root Locus (RL) Principle We introduce the RL through an example. Consider servo motor system shown bellow The closed loop transfer function is motor.
Control Systems Engineering, Fourth Edition by Norman S. Nise Copyright © 2004 by John Wiley & Sons. All rights reserved. Figure 10.1 The HP 35670A Dynamic.
Routh criterion based on regular Routh table: 1)d(s) is A.S. iff 1 st col have same sign 2) # of sign changes in 1 st col = # of roots in right half plane.
Automatic Control Theory School of Automation NWPU Teaching Group of Automatic Control Theory.
Shroff S.R. Rotary Institute of Chemical Technology Chemical Engineering Instrumentation and process Control.
CONTROL SYSTEM UNIT-IV Datta Meghe Institute of engineering Technology and Research Sawangi (meghe),Wardha 1 DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION.
Signals and Systems, 2/E by Simon Haykin and Barry Van Veen Copyright © 2003 John Wiley & Sons. Inc. All rights reserved. Figure 9.1 (p. 664) Two different.
Lecture 11/12 Analysis and design in the time domain using root locus North China Electric Power University Sun Hairong.
1 Chapter 9 Mapping Contours in the s-plane The Nyquist Criterion Relative Stability Gain Margin and Phase Margin PID Controllers in the Frequency Domain.
Salman Bin Abdulaziz University
Root Locus Method Assist. Professor. Dr. Mohammed Abdulrazzaq
Lec 9. Root Locus Analysis I
Root-locus Technique for Control Design
Root-Locus Analysis (1)
LINEAR CONTROL SYSTEMS
Root-Locus Analysis (2)
CH. 6 Root Locus Chapter6. Root Locus.
Presentation transcript:

Root Locus

Closed-loop control system with a variable parameter K.

Unity feedback control system. The gain K is a variable parameter.

Root locus for a second-order system when K e <K 1 <K 2. The locus is shown in color.

Evaluation of the angle and gain at s 1,for gain K=K 1.

(a) Single-loop system. (b) Root locus as a function of the parameter a.

(a) The zero and poles of a second-order system,(b) the root locus segments,and (c) the magnitude of each vector at s1.

A fourth-order system with (a) a zero and (b) root locus.

Illustration of the breakaway point (a) for a simple second- order system and (b) for a fourth-order system.

A graphical evaluation of the breakaway point.

Closed-loop system.

Evaluation of the (a) asymptotes and (b) breakaway point.

Illustration of the angle of departure:(a) Test point infinitesimal distance from p 1 ;(b) actual departure vector at p 1

Evaluation of the angle of departure.

The root locus for Example 7.4:locating (a) the poles and (b) the asymptotes.

1.Write the characteristic equation in pole-zero form so that the parameter of interest k appears as 1+kF(s)=O. 2.Locate the open-loop poles and zeros of F(s) in the s-plane. 3.Locate the segments of the real axis that are root loci. 4.Determinethenumberofseparateloci. 5.Locate the angles of the asymptotes and the center of the asymptotes. 6.Determine the break away point on the real axis(if any). 7.By utilizing the Routh-Hurwitz criterion, determine the point at which the locus crosses the imaginary axis(if it does so). 8.Estimate the angle of locus departure from complex poles and the angle locus arrival at complex zeros.

Root loci as a function of α and β:(a) loci as α varies; (b) loci as β varies for one value of α = α 1

A region in the s-plane for desired root location.

A feedback control system.

Closed-loop system with a controller.

Root locus for plant with a PID controller with complex zeros.

Laser manipulator control system.

Root locus for a laser control system.

The response to a ramp input for a laser control system.

Proposed configuration for control of the lightweight robot arm.

Root locus of the system if K 2 =0,and K1 is variedfrom K 1 =0 to K 1 =∞,and G c (s)=K 1.

Root locus for the robot controller with a zero inserted at s=-0.2 with G c (s) = K1.

Using the rlocus function.

Disk drive control system with a PD controller.

Sketch of the root locus.

Root Locus Plots for Typical Transfer Functions (continued).