Conditional Dynamics of Interacting Quantum Dots Lucio Robledo, Jeroen Elzerman, Gregor Jundt, Mete Atatüre, Alexander Högele, Stefan Fält, Atac Imamoglu.

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Coherence between spin singlet and triplet states in a coupled quantum dot University College London Jeroen Elzerman Kathi Weiss Yves Delley Javier Miguel-Sanchez.
True single photon sources V+ Particle like Wave-like during propagation Particle like Single atom or ion (in a trap) Single dye molecule.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
TRIONS in QWs Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
1. INTRODUCTION: QD MOLECULES Growth Direction VERTICAL MOLECULES LATERAL MOLECULES e-h+e-h+ 1. Electron states coupling (e - Tunneling ) 2. Hole states.
Excitation processes during strong- field ionization and dissociatation of molecules Grad students: Li Fang, Brad Moser Funding : NSF-AMO November 29,
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Quantum-Dot Spin-State Preparation with Near-Unity Fidelity M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, A. Imamoglou Science 312, 551 (2006)
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
PBG CAVITY IN NV-DIAMOND FOR QUANTUM COMPUTING Team: John-Kwong Lee (Grad Student) Dr. Renu Tripathi (Post-Doc) Dr. Gaur Pati (Post-Doc) Supported By:
Optically Driven Quantum Dot Based Quantum Computation NSF Workshop on Quantum Information Processing and Nanoscale Systems. Duncan Steel, Univ. Michigan.
Single-shot read-out of an individual electron spin in a quantum dot J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen,
CAVITY QUANTUM ELECTRODYNAMICS IN PHOTONIC CRYSTAL STRUCTURES Photonic Crystal Doctoral Course PO-014 Summer Semester 2009 Konstantinos G. Lagoudakis.
References Acknowledgements This work is funded by EPSRC 1.Paul Siddons, Charles S. Adams, Chang Ge & Ifan G. Hughes, “Absolute absorption on rubidium.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Quantum Quench of a Kondo-Exciton SFB/TR-12 Hakan Tureci, Martin Claassen, Atac Imamoglu (ETH), Markus Hanl, Andreas Weichselbaum, Theresa Hecht, Jan von.
Single Quantum Dot Optical Spectroscopy
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Quantum Dots: Confinement and Applications
Quantum Devices (or, How to Build Your Own Quantum Computer)
ITOH Lab. Hiroaki SAWADA
 stem electron density ~ 1×10 11 cm -2  Gate Voltage ( Vg ) 0.0 ~ 0.8V  wire electron density 0 ~ 4×10 5 cm -1  arm electron density 0 ~ 1.3×10 11.
Theory of Intersubband Antipolaritons Mauro F
Dynamic response of a mesoscopic capacitor in the presence of strong electron interactions Yuji Hamamoto*, Thibaut Jonckheere, Takeo Kato*, Thierry Martin.
Charge Carrier Related Nonlinearities
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
M. Ahmad Kamarudin, M. Hayne, R. J. Young, Q. D. Zhuang, T. Ben, and S. I. Molina Tuning the properties of exciton complexes in self- assembled GaSb/GaAs.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
Optical Characterization methods Rayleigh scattering Raman scattering transmission photoluminescence excitation photons At a glance  Transmission: “untouched”
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Exciton and Biexciton Energies in GaN/AlN Quantum Dots G. Hönig, A. Schliwa, D. Bimberg, A. Hoffmann Teilprojekt A5 Institut für Festkörperphysik Technische.
Recombination Dynamics in Nitride Heterostructures: role of the piezoelectric field vs carrier localization A.Vinattieri, M.Colocci, M.Zamfirescu Dip.Fisica-
Meet the transmon and his friends
Entanglement for two qubits interacting with a thermal field Mikhail Mastyugin The XXII International Workshop High Energy Physics and Quantum Field Theory.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Quantum information processing with electron spins Florian Meier and David D. Awschalom Funding from: Optics & Spin Physics.
Journal Club február 16. Tóvári Endre Resonance-hybrid states in a triple quantum dot PHYSICAL REVIEW B 85, (R) (2012) Using QDs as building.
Charge pumping in mesoscopic systems coupled to a superconducting lead
Zoltán Scherübl BME Nanophysics Seminar - Lecture
2 Qubits: Coupled pair of DQD. Physical system and effective Hamiltonian Electrostatic coupling between DQD1 and DQD2.
What Do We Mean by "Electronic Structure"? Jeffrey J. Kay Massachusetts Institute of Technology Christian Jungen Centre National de la Recherche Scientifique.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Coherent nonlinear optical spectroscopy of quantum dots Cameron Nelson Steel Group This work is funded by NSF-CPHOM.
Tunable excitons in gated graphene systems
Quantum Phase Transition of Light: A Renormalization Group Study
Interaction between Photons and Electrons
國立交通大學電子物理系 專題演講 Quantum optics in 3-level superconducting artificial atoms: Controlling one-photon and two-photon transparency Abstract We experimentally.
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance.
Terahertz Spectroscopy of CdSe Quantum Dots
FAM Mirko Rehmann March
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
T1 spin lifetimes in n-doped quantum wells and dots
Nonlinear response of gated graphene in a strong radiation field
Entangling Atoms with Optical Frequency Combs
Efficient optical pumping and quantum storage in a Nd:YVO nanocavity
Dynamics and decoherence of a qubit coupled to a two-level system
Self-Assembled Quantum Dot Molecules Studied by AFM
Presentation transcript:

Conditional Dynamics of Interacting Quantum Dots Lucio Robledo, Jeroen Elzerman, Gregor Jundt, Mete Atatüre, Alexander Högele, Stefan Fält, Atac Imamoglu Science 320, 772 (2008) ETH Dez Georg Kucsko

Abstract Two vertically coupled Quantum Dots (1 single-charged, 1 neutral) Transition probability controlled by excitation in neighboring QD Interaction mediated by tunnel coupling Gated by laser field Motivation -> realization of optical controlled phase gate between two solid state qubits

Theory Exciton X n charge carriers QD hole exchange splitting into X and X smaller, ‘blue‘ QD ‘red‘ QD 0 r,y 0 r,x mixing of resonant States -> shift -> shift in reds excitation energy -> conditional

Experimental implementation Photoluminescence (PL) measurement -> tunnel coupling charge change in red QD linear stark shift anticrossing with interdot and intradot

Differnetial transmission linear -> no tunnel coupling in X -b-b absorption of X polarized lasers 0r0r B and C with X laser present -b-b

density matrix approach conditional shift in red if blue laser in resonance gate voltage at 130 mV

Large shift in energy Tuning through gate voltage Gating in sub-picosecond timescales Advantages