G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.

Slides:



Advertisements
Similar presentations
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Advertisements

Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
Report for China Frontier Workshop (June 22nd 2006 Beijing) Wang Zhanguo Key Lab. of Semiconductor Materials Science, Institute of Semiconductors, Chinese.
Lecture 1: A New Beginning References, contacts, etc. Why Study Many Body Physics? Basis for new Devices Complex Emergent Phenomena Describe Experiments.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
One-dimensional hole gas in germanium silicon nanowire hetero-structures Linyou Cao Department of Materials Science and Engineering Drexel University 12/09/2005.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Quantum Control in Semiconductor Quantum Dots Yan-Ten Lu Physics, NCKU.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
POTENTIAL APPLICATIONS OF SPINTRONICS Dept. of ECECS, Univ.of Cincinnati, Cincinnati, Ohio M.Cahay February 4, 2005.
Spin transport in spin-orbit coupled bands
Quantum Dots PA2003: Nanoscale Frontiers Artificial atoms Schr ö dinger equation Square well potential Harmonic oscillator 2D Harmonic oscillator Real.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
Optical study of Spintronics in III-V semiconductors
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
School of Physics and Astronomy, University of Nottingham, UK
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Modeling of Energy States of Carriers in Quantum Dots
GaAs QUANTUM DOT COM Ray Murray. Why Quantum Dots? Novel “atom-like” electronic structure Immunity to environment Epitaxial growth Well established device.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Solar Cells, Sluggish Capacitance, and a Puzzling Observation Tim Gfroerer Davidson College, Davidson, NC with Mark Wanlass National Renewable Energy Lab,
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
STRUCTURE AND MAGNETIC PROPERTIES OF ULTRA-THIN MAGNETIC LAYERS
Theory of Intersubband Antipolaritons Mauro F
(In,Ga)As/(Al,Ga)As quantum wells on GaAs(110) R. Hey, M. Höricke, A. Trampert, U. Jahn, P. Santos Paul-Drude-Institut für Festkörperelektronik, Berlin.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.
Brad Gussin John Romankiewicz 12/1/04 Quantum Dots: Photon Interaction Applications.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
LW4 Lecture Week 4-1 Heterojunctions Fabrication and characterization of p-n junctions 1.
LaBella Group Towards an Atomic Scale Understanding of Spin Polarized Electron Transport Towards an Atomic.
QIC 890/891: A tutorial on Nanowires in Quantum Information Processing QIC 890/891: A tutorial on Nanowires in Quantum Information Processing Daryoush.
Berry Phase Effects on Electronic Properties
A. Imamoglu Department of Electrical and Computer Engineering, and Department of Physics, University of California, Santa Barbara, CA Quantum Dot.
Semiconductor and Graphene Spintronics Jun-ichiro Inoue Nagoya University, Japan Spintronics applications : spin FET role of interface on spin-polarized.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Region of possible oscillations
ZnCo 2 O 4 : A transparent, p-type, ferromagnetic semiconductor relevant to spintronics and wide bandgap electronics Norton Group Meeting 4/1/08 Joe Cianfrone.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Introduction to Spintronics
LaBella Group cnse.albany.edu Towards an Atomic Scale Understanding of Spin Polarized Electron Transport Towards.
EE105 - Spring 2007 Microelectronic Devices and Circuits
Electron-nuclear spin dynamics in optically pumped semiconductor quantum dots K.V.Kavokin A.F.Ioffe Physico-Technical Institute, St.Petersburg, Russia.
Single Electron Spin Resonance with Quantum Dots Using a Micro-magnet Induced Slanting Zeeman Field S. Tarucha Dep. of Appl. Phys. The Univ. of Tokyo ICORP.
MRS, 2008 Fall Meeting Supported by DMR Grant Low-Frequency Noise and Lateral Transport Studies of In 0.35 Ga 0.65 As/GaAs Studies of In 0.35 Ga.
Denis Bulaev Department of Physics University of Basel, Switzerland Spectral Properties of a 2D Spin-Orbit Hamiltonian.
Nano and Giga Challenges in Microelectronics, Cracow, 2004 Spin Injection in Semiconductor Nanostructures Alexey Toropov Ioffe Institute, St.Petersburg,
Spin-orbit interaction in semiconductor quantum dots systems
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Solar Cells based on Quantum Dots: Multiple Exciton Generation
Ultrafast Dynamic Study of Spin and Magnetization Reversal in (Ga,Mn)As Xinhui Zhang (张新惠) State Key Laboratory for Superlattices and Microstructures.
Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge W. S. Cho and J. A. C. Bland Cavendish Laboratory, University of Cambridge, UK.
1 August 27, 2012 Tailoring Light-Matter Interaction in Nanophotonic Environments Petru Tighineanu Quantum Photonics group.
Yu-Sheng Ou, PhD Ezekiel Johnston-Halperin’s group
Raman Effect The Scattering of electromagnetic radiation by matter with a change of frequency.
Possible methods of circumventing the 31% efficiency limit for thermalized carriers in a single–band gap absorption threshold solar quantum.
Information Storage and Spintronics 18
Presentation transcript:

G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum device structures

G. Kioseoglou Research Activities Research activities are focused on electrical spin injection and detection of spin polarized electrons into semiconductors. magnetic contacts ZnMnSe Fe FeGa MnGa tunnel barriers Shottky Al 2 O 3 MgO semiconductors GaAs QWs Si InGaAs Quantum Dots Essential Requirements for Spintronics Devices Efficient electrical injection Efficient spin transport Control of spin carriers Effective detection

G. Kioseoglou MBE growth (NRL) Comprehensive characterization magnetic (SQUID, FMR) transport (Hall, etc) structural (TEM, x-ray diff) composition (XRF) magneto-optical Theory and modeling MBE Growth and characterization

G. Kioseoglou DMS as a spin contact :ZnMnSe n-ZnMnSe/AlGaAs/GaAs/AlGaAs spin-polarized electron injection giant Zeeman splitting ∆E=g  B H g e ~ 30; spin splittings >> kT 100% spin polarized optical polarization     GaAs ZnMnSe P circ = I (  +) - I (  -) I (  +) + I (  -) P spin = nn nn - + nn nn P spin = P circ (QWs) P spin = 2 P circ (bulk) PRB62, 8180 (2000)APL79, 3098 (2001)

G. Kioseoglou Fe based GaAs Spin-LEDs Fe AlGaAs     metalsemicond APL82, 4092 (2003) APL80, 1240 (2002) APL84, 4334 (2004) n-AlGaAs i-GaAs p-AlGaAs Fe + - ++ --

G. Kioseoglou APL91, (2007) Spin injection from FeGa and MnGa into GaAs APL97, (2010) FeGa/Al 2 O 3 /GaAs MnGa/Al 2 O 3 /GaAs

G. Kioseoglou Silicon Spintronics Si / Si-Ge $ 120 Billion - extensive technology - extensive infrastructure Si is an ideal host for SpinS Low spin-orbit scattering is basic material property - low atomic mass - crystal inversion symmetry - low nuclear hyperfine interaction Long spin lifetimes for both donor-bound and free electrons in Si

G. Kioseoglou Electrical Spin Injection from Fe/Al 2 O 3 & Fe/SiO 2 into Si p-Si(001) substrate 150 nm p-Si 70 nm i-Si 70 nm n-Si Al 2 O 3 10 nm Fe ++ -- B.T. Jonker and G. Kioseoglou Nat. Phys. 3, 542 (2007) G. Kioseoglou et al, APL94, (2009) C.H. Li et al, APL95, (2009) P(TA) = 1.7 P(TO)

G. Kioseoglou Quantifying electron spin polarization from EL direct gap Optical polarization Electron spin polarization ^ T1T1 ^ L ^ T2T2  6 -  8 -  5  1  25'  so  7 +  8 +  15  2' indirect gap - the spin pol depends strongly on the phonon branch that mediates the opt transition Huge theoretical effort to understand spin orientation in Si p-type THEORY : P(TA) = 1.6 P(TO) Pengke Li and Hanan Dery, PRL105, (2010) 13% Experiment:P_TA sub =3.5% Spin injection efficiency 27%

G. Kioseoglou GaAs InAs 1 nm electrical spin injection up to RT DP mechanism is suppressed Fe based InAs QD Spin-LEDs

G. Kioseoglou reduced growth rate reduced density increased uniformity in size

G. Kioseoglou Filling of the electronic shell-states Continuous evolution of shell intensity with bias G. Kioseoglou et al, PRL 101, (2008)

G. Kioseoglou Another approach: P vs E Polarization exhibits maxima shifted with respect to intensity shell-peaks due to intershell exchange energy V x sp =7±2 meV V x sp =13.5±1 meV first measurement of the s-p and p-d intershell exchange energies a significant step towards understanding spin-polarized carriers in QDs G. Kioseoglou et al, PRL 101, (2008)

G. Kioseoglou IMPACT ZnMnSe/GaAs PRB62, 8180 (2000) Fe/GaAs APL80, 1240 (2002) APL82, 4092 (2003) Fe/Si Nat Physics3, 542 (2007)

G. Kioseoglou Dr. Jonker (NRL) Dr. Goswami (NRL)-microscopy Prof. Petrou (SUNY Buffalo) Dr. Pawel Hawrylak Quantum Theory Group, Institute for Microstructural Sciences, Ottawa Collaborations Prof. Hanan Dery University of Rochester, NY THEORY

G. Kioseoglou

Theory: 2 e-h pairs/QD – S z =-1 Initial state Final state s-p exchange between spin polarized electrons s-shell hole + p-shell elec s-shell exciton σ + The outgoing photon carries the initial-state exchange energy of the spin-polarized electrons

G. Kioseoglou n-AlGaAs i-GaAs p-AlGaAs Fe + - ++ -- 100 mm