W. Morse GamCal1 GamCal: a Beam-strahlung Gamma Detector for Beam Diagnostics William M. Morse Brookhaven National Lab.

Slides:



Advertisements
Similar presentations
Background studies Takashi Maruyama SLAC GDE Baseline Assessment Workshop SLAC, January 18-21, 2011.
Advertisements

EXTRACTION BEAM LOSS AT 1 TEV CM WITH TDR PARAMETERS Y. Nosochkov, G. White August 25, 2014.
The ILC low power option Andrei Seryi SLAC ILC08 and LCWS08 November 17, 2008 Photo: Dan Chusid, 2003.
GUINEA-PIG: A tool for beam-beam effect study C. Rimbault, LAL Orsay Daresbury, April 2006.
1 Vacuum Requirements in the Detector Region from Beam Gas and other Considerations Takashi Maruyama (SLAC) LCWA 2009, Albuquerque October 2, 2009.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
NLC - The Next Linear Collider Project  IR background issues and plans for Snowmass Jeff Gronberg/LLNL Linear Collider Workshop October 25, 2000.
Background Studies Takashi Maruyama SLAC ALCPG 2004 Winter Workshop January 8, 2004.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
Machine-Detector Interface MDI Panel Report MDI Panel is one of several World-Wide Study (WWS) panels (R&D, Detector costing, MDI, 2 IRs) Interim panel.
EM background tests of IP feedback hardware Christine Clarke Oxford University 24 th September 2007 Oxford (P. Burrows, C. Perry, G. Christian, T. Hartin,
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
An Introduction to the Physics and Technology of e+e- Linear Colliders Lecture 7: Beam-Beam Effects Nick Walker (DESY) DESY Summer Student Lecture 31 st.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
1 LumiCal Optimization and Design Takashi Maruyama SLAC SiD Workshop, Boulder, September 18, 2008.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Krakow2006.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
STUDY OF CHARMONIUM STATES IN ANTIPROTON-PROTON ANNIHILATIONS: RESULTS FROM FERMILAB E-835 Giulio Stancari Fermi National Accelerator Laboratory for the.
W. Morse May 15, Colliding 5nm Beams at the International Linear Collider William Morse Brookhaven National Lab.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Status of the PrimEx Experiment: A Precision Measurement of the Neutral Pion Lifetime 7 th European Conference on “Electromagnetic Interactions with Nucleons.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
ILC Meeting Vancouver July What Does Beam-strahlung Tell Us? William Morse - BNL.
Page 1 Overview and Issues of the MEIC Interaction Region M. Sullivan MEIC Accelerator Design Review September 15-16, 2010.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Global Design Effort ILC Crab Cavity Overview and requirements Andrei Seryi SLAC on behalf of ILC Beam Delivery and Crab-Cavity design teams Joint BNL/US-LARP/CARE-HHH.
Beam Monitoring from Beam Strahlung new work by summer students  Magdalena Luz (HU)  Regina Kwee (HU) Achim Stahl DESY Zeuthen 10.Oct.2003 LumiCal BeamCal.
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
ERHIC with Self-Polarizing Electron Ring V.Ptitsyn, J.Kewisch, B.Parker, S.Peggs, D.Trbojevic, BNL, USA D.E.Berkaev, I.A.Koop, A.V.Otboev, Yu.M.Shatunov,
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
Interaction Region Backgrounds M. Sullivan for the MEIC Collaboration Meeting Oct. 5-7, 2015.
Interaction Region Issues M. Sullivan for the EIC User Group Meeting Jan. 6-9, 2016.
ILC EXTRACTION LINE TRACKING Y. Nosochkov, E. Marin September 10, 2013.
SiD Workshop Highlights May 8, 2007 John Jaros. Jim Brau WWS Detector Roadmap SiD Workshop, Fermilab April 9, 2007 Keeping up with Machine: Motivation.
1 Calorimeters of the Very Forward Region Iftach Sadeh Tel Aviv University DESY Collaboration High precision design March 5 th 2008.
Beam-Beam interaction SIMulation: GUINEA-PIG C. Rimbault, LAL Orsay CARE 05, Geneva, November 2005.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Measurement of photons via conversion pairs with the PHENIX experiment at RHIC - Torsten Dahms - State University of New York at Stony Brook for the PHENIX.
Calibration of energies at the photon collider Valery Telnov Budker INP, Novosibirsk TILC09, Tsukuba April 18, 2009.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
William Morse ILC R&D April 19, ILC Detector R&D William Morse Physics Dept., BNL.
MAIN DUMP LINE: BEAM LOSS SIMULATIONS WITH THE TDR PARAMETERS Y. Nosochkov E. Marin, G. White (SLAC) LCWS14 Workshop, Belgrade, October 7, 2014.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
FCAL Munich October W.M. Morse 1 U.S. FCAL Efforts William Morse - BNL.
LumCal, BeamCal and GamCal
Other beam-induced background at the IP
eRHIC with Self-Polarizing Electron Ring
Tony Hill Lawrence Livermore National Laboratory
Optimization of the Luminosity using Beamstrahlung Photons
Interaction Region Design Options e+e- Factories Workshop
Study of e+ e- background due to beamstrahlung for different ILC parameter sets Stephan Gronenborn.
Calorimeters of the Very Forward Region
Accelerator R&D Results from the B-factory
The Very Forward Region of the ILC Detectors
The Effects of Beam Dynamics on CLIC Physics Potential
Crab Crossing Named #1 common technical risk (p. 6 of the report)
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

W. Morse GamCal1 GamCal: a Beam-strahlung Gamma Detector for Beam Diagnostics William M. Morse Brookhaven National Lab

W. Morse GamCal2 GamCal Detector W. Morse (BNL): Coordinator M. Ohlerich et al. (Zeuthen): beam- strahlung simulations B. Parker (BNL): Machine interface issues M. Zeller, G. Atoian, V. Issakov, A. Poblaguev (Yale): GamCal detector design Y. Nosochkov (SLAC): Extraction line issues

W. Morse GamCal3 RDR: Luminosity Feedback Detectors BeamCal and GamCal

W. Morse GamCal4 Beam-strahlung Gammas F = e(E + c  B) E = 0, B max  1KT P   2% P e  0.3MW N   1.5N e  3  /BX

W. Morse GamCal5 Beam-strahlung Pairs Bethe-Heitler:  e → e e + e -  BH  38 mb  1GeV Landau-Lifshitz: ee → ee e + e -  LL  19 mb  0.15GeV

W. Morse GamCal6 Beam-strahlung Pairs  0.1m low Z

W. Morse GamCal7 Bethe-Heitler Pairs  e → e e + e - For left and right detectors separately: N + /  x  y and N - /  x  y.

W. Morse GamCal8 Vertical Offset M.Ohlerich complementary information from 1.total photon energy vs offset_y 2.BeamCal pair energy vs offset_y ratio of E_pairs/E_gam vs offset_y is proportional to the luminosity similar behaviour for angle_y, waist_y … see also: EUROTeV-Memo

W. Morse GamCal9 GamCal and BeamCal Measuring the beam-strahlung pairs and gammas provides robust complementary information Ratio of pairs to gammas is largely proportional to the instantaneous luminosity

W. Morse GamCal10 BeamCal.003 <  <.02 rad  3.5m from IR Pairs curl in the magnetic field Measure the  10 4 beam-strahlung e + e - pairs/BX for beam diagnostics The distribution of the pairs on the BeamCal contains rich information on the beam parameters of the collision (beam sizes, emittances, etc.)

W. Morse GamCal11 GamCal Detector  180m from IR  X 0 to convert beam-strahlung gammas into e + e - pairs Converter could be gas jet or a thin solid converter Dipole magnet with P T kick 0.25 GeV/c separates the pairs from beam electrons Calorimeters outside vacuum after magnet measure the 1-10 GeV positrons

W. Morse GamCal12 Statistical Error for BX

W. Morse GamCal13 Start-up?

W. Morse GamCal14 Beam-strahlung  Z  e + e - Z

W. Morse GamCal15 GamCal Backgrounds from Beam Electrons ProcessBackground/signal Bremsstrahlung<1% Delta rays<1% Landau-Lifshitz  6%  production <0.1%

W. Morse GamCal16 Ratio of  Z  eeZ vs. eZ  eZee

W. Morse GamCal17

W. Morse GamCal18 Yale IBS Design

W. Morse GamCal19 Beam Diagnostics Detectors Conclusions BeamCal and GamCal provide robust complimentary information. GamCal backgrounds look OK – needs simulations. Can measure, and then subtract, the GamCal background by accelerating only one beam. Ratio of the beamstrahlung pairs (BeamCal) to gammas (GamCal) is largely proportional to the instantaneous luminosity. There is much rich information from pair distributions on BeamCal and IBS camera, which we are studying.

W. Morse GamCal20 Extra Slides

W. Morse GamCal21 Feed-back with Luminosity Detectors

W. Morse GamCal22 BNL Magnet Division Position Stability

W. Morse GamCal23 Achieving the ILC Luminosity Will Be a Challenge Bunch P - (t) {N,  x,  y,  z,  xy,  x,  y } Bunch P + (t) {N,  x,  y,  z,  xy,  x,  y } Instantaneous Luminosity: x y

W. Morse GamCal24 IBS Camera

W. Morse GamCal25 IBS Camera

W. Morse GamCal26 1  21  2 + - y z

W. Morse GamCal27 Perfect Collisions

W. Morse GamCal28 Bunch width

W. Morse GamCal29 Bunch Width

W. Morse GamCal30 GamCal Backgrounds

W. Morse GamCal31  Z  eeZ vs. eZ  eZee Electron carries virtual gammas Landau Lifshitz conversion of virtual gammas

W. Morse GamCal32  Production Compared to ee  p  eep   10 mb  p   N   0.5 mb on peak of Δ resonance  p   N   0.1 mb E > 4GeV ep  e  N   mb Thus ep  e  N is negligible