1 Generalized EC Type 2 support EC Type 1&2 supporting bridges Maarten Vissers 2011-07-19.

Slides:



Advertisements
Similar presentations
Experiences with IEEE 802.1ah (Provider Backbone Bridges) Ronald van der Pol SARA Sep 2009NORDUnet meeting, Copenhagen.
Advertisements

1 PBB MEPs and MIPs [Intended only for discussion purposes - DWM] MIP MEP MHF B CompI Comp Customer MD Levels SP MD Service Level IB Link Access.
M Vinod Kumar Problem with Peering PBBN. Introduction We present one problem related to Interop between two PBBN operators –We use packet flow in forward.
Multi Domain Traffic Engineered Transport Networks (E-OTN, PTN) supporting P2P, P2MP, RMP and MP2MP Ethernet Services An overview of architecture and.
Multi Domain Traffic Engineered Transport Networks (E-OTN, PTN) supporting P2P, P2MP, RMP and MP2MP Ethernet Services An overview of architecture and functionality.
Port group model in G.8021 Akira Sakurai G.8021 Co-editor IEEE and ITU-T Q.9/15 Ethernet Transport issues (Geneva, 27 May 2010)
Extending OTN Standards to Support Ethernet Services
EVC structure for a Protected E-Line service
1 Introducing the Specifications of the Metro Ethernet Forum.
1 Introducing the Specifications of the Metro Ethernet Forum.
1 Introducing the Specifications of the Metro Ethernet Forum MEF 17 Service OAM Framework and Requirements February 2008.
1 Transport Services Layer Protection Switching Types Interacting with DRNI Maarten Vissers
1 DRNI Examples and DAS position Maarten Vissers
1 DRNI Examples and DAS position Maarten Vissers Version 01.
1 Alternative solution for EC Type II support Maarten Vissers
1 Generalized EC Type 2 support EC Type 1&2 supporting bridges Maarten Vissers v01.
1 Distributed Network Protection (DNP) architecture study Maarten Vissers v4 v2: includes a few slides at the end illustrating segment protection.
802.1Qay PBB-TE Protection Switching Overview
802.1ag - Connectivity Fault Management Tutorial – Part 1 Dinesh Mohan July 12, 2004.
1 DRNI and Distributed Protection Examples Maarten Vissers v01 Based on slides presented in IW meeting in Nanjing on Thursday Sept 22.
M Vinod Kumar Tejas Networks Ltd.  Example  Requirements  Possible solutions.
1 Distributed Network Protection (DNP) architecture study Maarten Vissers v3 v2: includes a few slides at the end illustrating segment protection.
DRNI Examples, DAS position, MEP/MIP position
IETF 73 November aq Shortest Path Bridging Overview for IETF Don Fedyk Editor 802.1aq.
© 2010 Tata Communications Ltd., All Rights Reserved Presented by © 2010 Tata Communications Ltd., All Rights Reserved Tata Communications’ Ethernet Evolution.
1 Common network architectures for PBB, PBB-TE and EOTN networks version 01 Maarten Vissers v01 includes new slides 10 and 12: Slide 10 presents.
1 Review of Important Networking Concepts Introductory material. This module uses the example from the previous module to review important networking concepts:
1 DRNI and G.8031 ETH SNCP interworking Maarten Vissers
© Copyright 2011 Fujitsu Network Communications, Inc. Carrier Ethernet Security Threats and Mitigation Best Practices Ralph Santitoro Director of Carrier.
© UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY IEEE 802.1ad Provider Bridges Henry He UNH-IOL Bridge Functions Consortium.
1 Multipoint Ethernet Connection Protection
CECS 474 Computer Network Interoperability Tracy Bradley Maples, Ph.D. Computer Engineering & Computer Science Cal ifornia State University, Long Beach.
Copyright © 2004 Juniper Networks, Inc. Proprietary and Confidentialwww.juniper.net 1 77th IETF - Anahaim VPLS PE Model with E-Tree Support Yuanlong Jiang.
1 DRNI Data Plane Model I/II Comparison & MAC Address Values in DRNI Maarten Vissers v00.
1 Data Plane Summary Maarten Vissers v1.
1 Supporting VUNI in DRNI Maarten Vissers v01 v01: added multiple virtual UNI with hairpin.
Virtual LANs. VLAN introduction VLANs logically segment switched networks based on the functions, project teams, or applications of the organization regardless.
1 Introducing the Specifications of the Metro Ethernet Forum.
VPLS Extensions for Provider Backbone Bridging - draft-balus-l2vpn-vpls-802.1ah-01.txt John Hoffmans – KPN Geraldine Calvignac - France Telecom Raymond.
Omniran PtP Links across IEEE 802 Bridged Infrastructure Date: Authors: NameAffiliationPhone Max
IETF68 CCAMP1 GMPLS Control of Ethernet Forwarding Don Fedyk Loa Andersson
Q description of G.8031 Ethernet Connection (EC) SubNetworkConnection (SNC) Protection “VLAN Segment Protection” Maarten Vissers v2.
1 Common network architectures for PBB, PBB-TE and EOTN networks Maarten Vissers
Slide title In CAPITALS 50 pt Slide subtitle 32 pt PBB-TE Status Report Panagiotis Saltsidis.
1/28/2010 Network Plus Network Device Review. Physical Layer Devices Repeater –Repeats all signals or bits from one port to the other –Can be used extend.
1 Portal Models Maarten Vissers v1. 2 DRNI Applicability DRNI model is applicable to many different portal types 1.PB Portal (S-DRNI) 2.BCB.
Local Area Networks Andres, Wen-Yuan Liao Department of Computer Science and Engineering De Lin Institute of Technology
VPLS Extensions for Provider Backbone Bridging - draft-balus-l2vpn-vpls-802.1ah-02.txt John Hoffmans – Geraldine Calvignac -
© 2006 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 draft-martini-pwe ah-pw-03.txt Ali Sajassi July 29, ah.
Setup and Manage PBB-based Tunnels with PWE3 Mechanism Ping Pan (Hammerhead Systems) Shane Amante (Level 3) Nasser El-Aawar (Level 3) Chicago, IETF 69.
NET 324 D Networks and Communication Department Lec1 : Network Devices.
Carrier-Grade Ethernet Technology
Data Link Layer and Ethernet COM211 Communications and Networks CDA College Theodoros Christophides
(ed) Peter Ashwood-Smith
Omniran CF00 1 VLANs in relation to P802.1CF NRM Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Portal Models Maarten Vissers v2
HUAWEI TECHNOLOGIES CO., LTD. Page 1 25 March 2009 Peer Interworking Ethernet and PDH service cases Maarten Vissers.
M Vinod Kumar Tejas Networks Ltd.  Example  Requirements  Possible solutions.
1 Distributed Network Protection (DNP) architecture study Maarten Vissers v1.
Supporting VUNI in DRNI Maarten Vissers v00
SES E-VPL Member Deployment for NJEDge.Net
Egress Bandwidth Profile Considerations for Multipoint
Alternative solution for EC Type II support
Migrating Your Network to Avaya Fabric Connect
RNI Requirements Imposed by PBB-TE
Connecting LANs, Backbone Networks,
E-OTN status update and service interface question [associated with ITU-T liaison statement liaison-itut-sg15-ols ] version 01 New slides:
Stephen Haddock September 13, 2012
DRNI and Distributed Network Protection Model Evolution: Maarten  Norm  Steve Maarten Vissers v1  
Review of Important Networking Concepts
Presentation transcript:

1 Generalized EC Type 2 support EC Type 1&2 supporting bridges Maarten Vissers

2 Introduction eotn-common-network-arch-0511-v01.pptxhttp:// eotn-common-network-arch-0511-v01.pptx presented common network architectures for PBB, PBB-TE and EOTN networks to determine the Tagging method of EC Type 2 signals in an EOTN The last two slides in the above presentation indentified implications of the Tagging methods within PB, PBB I and PBB-TE networks These slides were not addressed in Santa Fe meeting due to time constraints This new presentation addresses the implications of the choice of I+S- Tagging of EC Type 2 signals in PB, PBB I and PBB-TE networks Furthermore, this presentation presents some initial feedback on the tagging choice

3 EC Type 2 support beyond PBB and EOTN One may expect that EC Type 2 signal support will be required beyond the PBB II and EOTN networks in future; e.g. in EoSDH, EoMPLS(-TP)/VPLS, PBB-TE, PBB I and PB networks EoSDH transports S-Tagged EC Type 1 signals via GFP-F over SDH VC-n connections; this is a similar environment as in EOTN and I+S-Tagged EC Type 2 signals would be applicable PB, PBB-TE and PBB I transport S-Tagged EC Type 1 signals; should/could EC Type 2 signals be transported with I+S- Tags? NOTE: EC Type 2 support in EoMPLS(-TP)/VPLS is TBA

4 EC frame tagging in PB, PBB, PBB-TE, EOTN NetworkEC Type 1 frame tagEC Type 2 frame tag PB + PBB I (PEB, PB, IB-BEB, BCB only) S-Tag Note: in B-VLAN an I-Tag or S+I-Tag is used I+S-Tag ? PB + PBB II (PEB, PB, IB-BEB, TB-BEB, I-BEB, B- BEB, BCB) S-Tag Note: Inside PBB network the EC frames are carried inside a 2 nd EC frame, which is I-Tagged I-Tag PB + PBB-TE (PEB, PB, IB-BEB, BCB) S-Tag Note: in ESP an I-Tag or S+I-Tag is used I+S-Tag ? EOTN (TEB,TB, OTN XC) S-TagI+S-Tag Note: agreed in Santa Fe meeting EC Type 1: EC carrying an EVC which is not-MAC-in-MAC encapsulated EC Type 2: EC carrying an EVC which is MAC-in-MAC encapsulated

5 EC Type 1&2 supporting PEB S-Tagged LANs S(B)-VLAN Component S-VLAN Component C-VLAN Component EC Type 1 & 2 supporting Provider Edge Bridge (PEB2) CEP C-VLAN Component CEPPAP PEP CNP RCAP PNP PEP Remote Customers S-Tagged Service interface CNP CBP I-Tagged service interface (I-Tagged) I- Component CNP PIP CBP CNP C-VLAN Component CNP PEP CEP CNP S-Tagged Service Interface (S-Tagged) CNP C-Tagged Service Interface (un-, priority-C-. C-Tagged) Port Based Service Interface (un- C-, priority-S- I-Tagged) Port-based, S- & C-Tagged Service Interface (S-, S+C-Tagged) C-Tagged Service Interface (un-, priority-C-, C-Tagged) Port Based Service Interface (un-, C-, priority-S- I-Tagged) S-Tagged Service Interface (S-Tagged) Individual or bundled I-Tagged Services Individual S-VLAN Service Remote Customer Port- based Service Interface Remote Customers C-Tagged service interface T- Component CNP Transparent Service Interface (un-, C-, S-, I-Tagged) PIPCBP S-VLAN Component C-VLAN Component CEPPAP CNP RCAP PNP PEP Remote Customers S-Tagged Service interface Port-based, S- & C-Tagged Service Interface (S-, S+C-Tagged) Remote Customer Port- based Service Interface Remote Customers C-Tagged service interface Tributary Port functonality Line Port functionality To/from PEB & PEB2 & PB & PB2 & IBBEB & IBBEB2 & MEF E-NNI B-Com- ponent PNP CBP B-Com- ponent PNP CBP B-Com- ponent PNP CBP EC Type 1 EC Type 2 EC Type 1&2 PNP ports in PEB node are replaced by B-component complex to support EC Type 2 MEPs and MIPs EC Type 2 UNI-N tributary ports are added to PEB node

6 S(B)-VLAN Component EC Type 1 & 2 supporting Provider Bridge (PB2) B-Com- ponent S-Tagged LANs PNP Line Port functionality PNP CBP B-Com- ponent PNP CBP B-Com- ponent S-Tagged LANs PNP Line Port functionality PNP CBP B-Com- ponent PNP CBP B-Com- ponent PNP CBP B-Com- ponent PNP CBP EC Type 1&2 supporting PB PNP ports in PB node are replaced by B-component complex to support EC Type 2 MEPs and MIPs NOTE: BCB node does not need to support EC Type 2 B-Com- ponent PNP CBP PNP PNP2 = EC Type 1 & 2 supporting PNP EC Type 1 signals EC Type 2 signals

7 EC Type 1&2 supporting PBB-TE IB-BEB CNP and PIP ports in PBB-TE IB-BEB node are replaced by B- component complex to support EC Type 2 MEPs and MIPs B-Tagged LANs B-VLAN Component EC Type 1 & 2 supporting PBB-TE IB Backbone Edge Bridge (IB-BEB2) PNP I- Component B-Com- ponent PNP CBP B-Com- ponent PNP CBP B-Com- ponent CNP PNP CBP B-Com- ponent CNP PNP CBP PIP CBP S-Tagged LAN PNP I- Component B-Com- ponent PNP CBP B-Com- ponent PNP CBP B-Com- ponent CNP PNP CBP B-Com- ponent CNP PNP CBP PIP CBP S-Tagged LAN EC Type 1 & 2 signals must pass through I-Component -ESP-MAC is not the same as B-MAC

8 EC Type 1&2 supporting PBB I IB-BEB CNP ports in PBB I IB-BEB node are replaced by B- component complex to support EC Type 2 B-Tagged LANs B-VLAN Component EC Type 1 & 2 supporting PBB I IB Backbone Edge Bridge (IB-BEB2) PNP I- Component B-Com- ponent CNP CBP PNP B-Com- ponent CNP PNP CBP PIP CBP S-Tagged LAN PNP S-Tagged LAN CBP I- Component B-Com- ponent CNP CBP PNP CBP B-Com- ponent CNP PNP CBP PIP CBP EC Type 2 signals can bypass I-Component

9 Initial feedback I+S-Tagged EC Type 2 OAM is not acceptable EC Type 2 OAM should be S-Tagged like EC Type 1 OAM Use of S-Tagged EC Type 2 OAM will allow reuse of existing EC Type 1 NNI ports in packet and packet-optical transport networks Considerations  I-Tagged LANs are not in the network/do not exist  I-Tagged Ethernet OAM (BSI OAM) is not in the network/does not exist  PBB network deployments are single domain PBB networks with S- Tagged LAN ingress/egress interfaces  No need for EC Type 2 to interwork with PIP in IB-BEB

10 How to continue? Ignore initial feedback and continue with I+S-Tagged EC-Type 2 OAM in standards?  Extend 802.1Q PEB, PB, PBB I IB-BEB and PBB-TE IB-BEB nodes with I+S-Tagged EC Type 2 MEP and MIP support  Let ITU-T SG15 add I+S-Tagged EC Type 2 specifications to its transport network recommendations  Build equipment with (non-standard) S-Tagged EC Type 2 OAM support Revise our May 2011 decision?  Consider that BEBs are used only within the network, not as Network Termination (NT)/Network Interface Device (NID); i.e. BEBs have no UNI-N ports, BEBs only have NNI ports  Extend 802.1Q PEB node with EC Type 2 UNI-N ports and S- Tagged EC Type 2 OAM

11 Backup EC Type1 and EC Type 2 examples including EC/ESP layer stack and EC/ESP identifiers EC Type1 and EC Type 2 (un)tagged primitive formats

12 1. PBB I and PBB-TE network EVC(C-VLAN) via EC Type 1 PEB2 BC B IB-BEB2 CNP2 PNP2 IB-BEB2 BC B CNP2 S S S B(I) UNI B(I) BC B IB-BEB2 CNP2 S S B(I) BC B I B-BEB2 B(I) CEP CNP2 mp2mp B-VLAN or p2p TESI mp2mp B-VLAN or p2p TESI mp2mp B-VLAN or p2p TESI EVC = C-VLAN EC Type 1 S-VID Translation at PBBN domain boundaries (in CNP2) PBB I: few mp2mp B- VLANs in each domain; B-MAC per domain PBB-TE: full mesh of p2p TESIs in each domain; ESP-MAC per domain no MAC address collisions in PBBN domains (multiple single-domain PBBNs) S-VID Translation locations PEB PNP UNI CEP S PEB2 PNP2 S UNI CNP

13 2. PBB I and PBB-TE network EVC(S-VLAN) via EC Type 2 PEB2 BC B IB-BEB2 CNP2 PNP2 IB-BEB2 BC B CNP2 S S S B(I) UNI B(I) BC B IB-BEB2 CNP2 S S B(I) BC B I B-BEB2 B(I) CEP CNP2 mp2mp B-VLAN or p2p TESI mp2mp B-VLAN or p2p TESI mp2mp B-VLAN or p2p TESI S-VID/I-SID Translation locations PEB PNP UNI CEP S PEB2 PNP2 S UNI CNP EVC = S-VLAN EC Type 2, “Service B- MAC” from UNI-N to UNI-N S-VID/I-SID Translation at PBBN domain boundaries (in CNP2) PBB I: few mp2mp B- VLANs in each domain; B-MAC per domain PBB-TE: full mesh of p2p TESIs in each domain; ESP-MAC per domain no MAC address collisions in PBBN domains (multiple single-domain PBBNs)

14 Layer stack PB + PBB-TE for EVC(C-VLAN) via EC Type 1 EVC EC (Type 1 and Type 2 ) ESP EC PHY EC PHY ESP EC PHY EC PHY ESP EC PHY EC PHY C-VID EC (link) I-SID S-VID ESP-VID ESP-MAC ESP-VID ESP-MAC ESP-VID ESP-MAC S-VID is optional; typically not present in a 1:1 case C-MAC

15 Layer stack PB + PBB-TE for EVC(S-VLAN) via EC Type 2 EVC EC ( Type 1 and Type 2) ESP EC PHY EC PHY ESP EC PHY EC PHY ESP EC PHY EC PHY EC PHY I-SID S-VID I-SID S-VID I-SID S-VID I-SID S-VID I-SID S-VID I-SID ESP-VID ESP-MAC ESP-VID ESP-MAC ESP-VID ESP-MAC S-VID I-SID S-VID I-SID S-VID Service B-MAC S-VID is optional; typically not present in a 1:1 case C-VID I-SID = S-VID+4096

16 Layer stack PB + PBB I for EVC(C-VLAN) via EC Type 1 EVC EC (Type 1 and Type 2 ) EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC (link) PHY EC PHY C-VID B-MAC I-SID S-VID I-SID S-VID I-SID S-VID B-VID S-VID S-VID is optional; typically not present in a 1:1 case C-MAC

17 Layer stack PB + PBB I for EVC(S-VLAN) via EC Type 2 EVC EC ( Type 1 and Type 2) EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC PHY EC PHY S-VID B-VID B-MAC I-SID S-VID I-SID S-VID I-SID S-VID I-SID S-VID I-SID S-VID I-SID S-VID I-SID S-VID I-SID Service B-MAC S-VID is optional; typically not present in a 1:1 case C-VID I-SID = S-VID+4096

18 3. PBB II network EVC(C-VLAN) via EC Type 1 PEB2 BC B IB-BEB2 CNP2 PNP2 B-BEB BC B CBP S I I B(I) UNI B(I) BC B B-BEB CBP I I B(I) BC B I B-BEB2 B(I) CEP CNP2 mp2mp B-VLAN EVC = C-VLAN EC Type 1 EC Type 1 over EC(BSI) in PBBN S-VID Translation at PBBN network boundary (in CNP2) I-SID Translation at PBBN domain boundaries (in CBP) PBB II: few mp2mp B- VLANs in each domain; B-MAC per network potential MAC address collisions in PBBN domains S-VID Translation locations PEB PNP UNI CEP S PEB2 PNP2 S UNI CNP I-SID Translation locations

19 4. PBB II network EVC(S-VLAN) via EC Type 2 PEB2 BC B IB-BEB2 CNP2 PNP2 B-BEB BC B CBP S I I B(I) UNI B(I) BC B B-BEB CBP I I B(I) BC B I B-BEB2 B(I) CEP CNP2 mp2mp B-VLAN EVC = S-VLAN EC Type 2, “Service B- MAC” from UNI-N to UNI-N EC Type 2 over EC(BSI) in PBBN S-VID Translation at PBBN network boundary (in CNP2) I-SID Translation at PBBN domain boundaries (in CBP) PBB II: few mp2mp B- VLANs in each domain; B-MAC per network potential MAC address collisions in PBBN domains S-VID Translation locations PEB PNP UNI CEP S PEB2 PNP2 S UNI CNP I-SID Translation locations

20 Layer stack PB + PBB II for EVC(C-VLAN) via EC Type 1 EVC EC (Type 1 and Type 2 ) EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC PHY EC PHY EC(BSI) C-VID B-MAC S-VID I-SID B-VID S-VID I-SID S-VID is optional; typically not present in a 1:1 case C-MAC

21 Layer stack PB + PBB II for EVC(S-VLAN) via EC Type 2 EVC EC ( Type 1 and Type 2) EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC PHY EC(BVLAN) EC PHY EC PHY EC PHY S-VID I-SID B-VID S-VID I-SID Service B-MAC I-SID C-VID I-SID = S-VID+4096

22 EC Type 1 Tag EC Type 1 primitive parameters - destination_address - source_address - priority - drop_eligible - mac_service_data_unit = MSDU Type <> EC Type 2 OAM primitive parameters - destination_address (=B-DA) - source_address (=B-SA) - priority - drop_eligible - mac_service_data_unit = OAM PDU Type = MSDU S-VIDPCP DEI TPID = 88-a8 OAM PDU Type = S-VIDPCP DEI TPID = 88-a8 S-Tagged EC Type 1 primitive parameters - destination_address - source_address - priority - drop_eligible - mac_service_data_unit = S-Tagged EC Type 1 OAM primitive parameters - destination_address - source_address - priority - drop_eligible - mac_service_data_unit = Type <> 89-10

23 EC Type 2 Tag EC Type 2 primitive parameters - destination_address - source_address - priority - drop_eligible - mac_service_data_unit = C-DA C-SA MSDU Type = Type EC Type 2 OAM primitive parameters - destination_address - source_address - priority - drop_eligible - mac_service_data_unit = OAM PDU Type = C-DA C-SA MSDU Type S-VIDPCP DEI TPID = 88-a8 TPID = 88-E7 I-SIDPCP DEI Res2 0 Res1 I-SID = S-VID TPID = 88-E7 I-SIDPCP DEI Res2 1 Res1 I-SID = S-VID C-DA = B-DA C-SA = B-SA OAM PDU Type = S-VIDPCP DEI TPID = 88-a8 I+S-Tagged EC Type 2 primitive parameters -destination_address - source_address - priority - drop_eligible - mac_service_data_unit = I+S-Tagged EC Type 2 OAM primitive parameters -destination_address - source_address - priority - drop_eligible - mac_service_data_unit = TPID = 88-E7 I-SIDPCP DEI Res2 0 Res1 I-SID C-DA C-SA MSDU Type TPID = 88-E7 I-SIDPCP DEI Res2 0 Res1 I-SID C-DA = B-DA C-SA = B-SA OAM PDU Type = I-Tagged EC Type 2 primitive parameters -destination_address - source_address - priority - drop_eligible - mac_service_data_unit = I-Tagged EC Type 2 OAM primitive parameters - destination_address - source_address - priority - drop_eligible - mac_service_data_unit = (destination address = f(B-DA,DBD)