(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.

Slides:



Advertisements
Similar presentations
Lecture 5: Gamma-Ray Bursts Light extinction:. GRBs are brief flashes of soft -ray radiation ( 100 keV), discovered in the 1970s, the origin of which.
Advertisements

Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China) Fan (2009, MNRAS) and Fan & Piran (2008, Phys. Fron. China)
Very High Energy Transient Extragalactic Sources: GRBs David A. Williams Santa Cruz Institute for Particle Physics University of California, Santa Cruz.
Spectral Energy Correlations in BATSE long GRB Guido Barbiellini and Francesco Longo University and INFN, Trieste In collaboration with A.Celotti and Z.Bosnjak.
Gamma-ray bursts Discovered in 1968 by Vela spy satellites
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
Outflow Residual Collisions and Optical Flashes Zhuo Li (黎卓) Weizmann Inst, Israel moving to Peking Univ, Beijing Li & Waxman 2008, ApJL.
29 March 2005 John G. Learned GRB Gamma Ray Bursts An Ongoing Mystery, Evolving Quickly John G. Learned University of Hawaii with slides from many folks,
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy I: Gamma-Ray Bursts Geoff Bower.
Modeling GRB B Xuefeng Wu (X. F. Wu, 吴雪峰 ) Penn State University Purple Mountain Observatory 2008 Nanjing GRB Workshop, Nanjing, China, June
COSMIC GAMMA-RAY BURSTS The Current Status Kevin Hurley UC Berkeley Space Sciences Laboratory.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Modelling the GRB light curves using a shock wave model
Gamma-Ray Bursts: The Biggest Explosions Since the Big Bang Edo Berger.
High energy emission in Gamma Ray Bursts Gabriele Ghisellini INAF – Osservatorio Astronomico di Brera.
Gamma-Ray Bursts and Supernovae Tsinghua Transient Workshop 8 Nov 2012 Elena Pian INAF-Trieste Astronomical Observatory, Italy & Scuola Normale Superiore.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
Properties of X- Ray Rich Gamma- Ray Bursts and X -Ray Flashes Valeria D’Alessio & Luigi Piro INAF: section of Rome, Italy XXXXth Moriond conference, Very.
Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics Tata Institute of Fundamental Research.
1 Short GRBs - and other recent developments in GRBs Tsvi Piran ( HU, Jerusalem) Dafne Guetta (Rome Obs.)
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
Unstable e ± Photospheres & GRB Spectral Relations Kunihito Ioka (IPNS, KEK) w/ K.Murase, K.Toma, S.Nagataki, T.Nakamura, M.Ohno, Suzaku team, P.Mészáros.
BH Astrophys. Ch3.6. Outline 1. Some basic knowledge about GRBs 2. Long Gamma Ray Bursts (LGRBs) - Why so luminous? - What’s the geometry? - The life.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Neutrinos and TeV photons from Soft Gamma Repeater giant flares Neutrino telescopes can be used as TeV  detectors for short time scale events using 
L. Piro - ILIAS meeting Gamma-Ray Bursts Luigi Piro Istituto Astrofisica Spaziale Fisica Cosmica - Roma INAF.
Kunihito IOKA (Osaka Univ.) 1.Observation 2.Fireball 3.Internal shock 4.Afterglow 5.Jet 6.Central engine 7.Links with other fields 8.Luminosity-lag 9.X-ray.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
Models of GRB GeV-TeV emission and GLAST/Swift synergy Xiang-Yu Wang Nanjing University, China Co-authors: Peter Meszaros (PennState), Zhuo Li (PKU), Hao-ning.
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
1st page of proposal with 2 pictures and institution list 1.
A Unified Model for Gamma-Ray Bursts
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
VHE  -ray Emission From Nearby FR I Radio Galaxies M. Ostrowski 1 & L. Stawarz 1,2 1 Astronomical Observatory, Jagiellonian University 2 Landessternwarte.
Gamma-Ray Bursts. Short (sub-second to minutes) flashes of gamma- rays, for ~ 30 years not associated with any counterparts in other wavelength bands.
EMISSION OF HIGH ENERGY PHOTONS FROM GRB
Masaki Yamaguchi, F. Takahara Theoretical Astrophysics Group Osaka University, Japan Workshop on “Variable Galactic Gamma-ray Source” Heidelberg December.
Alessandra Corsi (1,2) Dafne Guetta (3) & Luigi Piro (2) (1)Università di Roma Sapienza (2)INAF/IASF-Roma (3)INAF/OAR-Roma Fermi Symposium 2009, Washington.
Physical parameters of the relativistic shells in the GRBs S. Simić 1, L. Grassitelli 2 and L. Č. Popović 3,4 1) Faculty of Science, Department of Physics,
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
Gamma-Ray Bursts Review of the GRB phenomenon Outline of the observational facts and empirical phenomenological relations Outline of models Markus Garczarczyk.
Classification of Gamma-Ray Bursts: an observational review Paolo D’Avanzo INAF – Osservatorio Astronomico di Brera.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Fermi Several Constraints by Fermi Zhuo Li ( 黎卓 ) Department of Astronomy, Peking University Kavli Institute of Astronomy and Astrophysics 23 August, Xiamen.
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Ariel Majcher Gamma-ray bursts and GRB080319B XXIVth IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy.
Short Gamma Ray Bursts Curtis DeWitt.
GRB-Supernova observations: State of the art
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
Center for Computational Physics
Presentation transcript:

(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary

Gamma-Ray Burst Brightest object ~ ergs s -1 Vela satellites (1967) Origin has been a puzzle

GRB Spectrum Band spectrum Non-thermal

Angular Distribution Isotropic ~ 1000 events/yr

Duration Long-soft Short-hard Long burst Short burst

Discovery of Afterglow X-ray Radio Beppo-SAX (1997)

Redshift z max =4.5 Optical → Redshift

Summary of Observation Luminosity Time GRB ~ 1000 events/yr Isotropic, Inhomogeneous ~ 200 keV, Non-thermal 10  3 s ~ 10 3 s : short, long Afterglow X-ray Optical Radio Redshift >msec

Standard Model ? optically thick  → e + e  Central Engine Internal Shock External shock  >100 ISM Luminosity Time GRB Afterglow Kinetic energy ↓ Shock dissipation

Afterglow Model reverse shockforward shock ISM Shock emission ① Electron Fermi acceleration ② Magnetic field Internal energyKinetic energy ⇒ Synchrotron emission

Great Success of Model Price et al.(03) Fitting: Synchrotron shock model Sari,Piran& Narayan(98)

Panaitescu&Kumar(00) Galama et al.(98)

Optical Flash Sari&Piran(99) Zhang et al.(03) reverse shockforward shock ISM Shock emission

Jet Jet & Relativistic beaming ・ Relativistic beaming ・ Jet Jet in afterglow :sideways expansion Energy, Event rate, Model

Break in afterglow Harrison et al.(99) Break time ⇒ Jet angle Break time

Standard Total Energy Frail et al.(01) Bloom et al.(03) Small dispersion

Massive Star Origin Massive stellar collapse (Hypernova, Collapsar) Binary NS merger

Supernova in afterglow Bloom et al.(99) Hjorth et al.(03) 1st example: SN1998bw-dim GRB980425

Position in host galaxy Bloom,Kulkarni&Djorgovski(02)

GRB Cosmology Massive star origin ⇒ High redshift GRBs Larson&Bromm(02) GRB QSO, galaxy GRBs are useful for probing high z Like QSO Like SN Star formation Microlensing Reionization …

Short Summary 1.Cosmological (Long GRBs) 2.Relativistic jet is ejected:  >100 3.Internal shock: GRB 4.External forward shock: Afterglow 5.External reverse shock: Optical flash 6.Synchrotron shock model succeeds 7.Standard total energy (?) 8.Massive star origin (Long GRBs) But, …

Problems  Fireball content: Kinetic or magnetic ?  GRB emission mechanism: Synchro or not ?  GRB jet structure: Uniform or not ?  Jet acceleration: How to launch ?  Environment: What is in front ?  Shock parameters: Universal or not ?  Short GRBs: What ?  Other emissions: UHECR, HE, HE , GW ?  GRBs & cosmology: How to use ? Etc …

GeV Bursts Hurley et al.(94) GRB >10GeV photons can last for > 1hr GeV burst starts with MeV 2% of total energy at 30MeV-20GeV Earth occultation 18GeV 90min GeV at 2.4s and 25s Spectral index – 2 to GeV >MeV energy ~ <MeV one Sommer et al.(94) EGRET: 7GRB (100MeV< <18GeV)

Possible TeV Bursts Atkins et al.(00) Milagrito: Tentative (3  ) TeV detection in 54 bursts >50GeV fluence ~ 10×MeV but no z Tibet array (>10TeV): superpose 57 bursts: 6  GRAND (>10GeV): GRB971110: 2.7  Milagro (>100GeV): VHE fluence<MeV one GRB970417a a-ph/

>MeV Tail in GRB Gonzalez et al.(03) One of 26GRBs High energy decays more slowly Photon number index: -1 (hard)

Totani(00) ⇒ Nearby GRBs Kneiske et al.(03) 10 3 events/(3Gpc) 3 /yr ~ 1event/(100Mpc) 3 /30yr ⇒ Off-axis GRB ? 5GRB (z<0.5) IR Background

Internal Shock ? optically thick  → e + e  Central Engine Internal Shock External shock  >100 ISM Luminosity Time GRB Afterglow Kinetic energy ↓ Shock dissipation

e ± Pair Creation Target photon energy Cutoff energy N photon ~ 200keV  ⇒ Dim or long timescale bursts for TeV * Scattering constraint is stronger if  <  m e c 2 TeV N target  target Lithwick&Sari(01)

Shock Acceleration Time scales Maximum energy ① Acceleration time ② Dynamical time ③ Cooling time ⇒ ① Synchro ② SSC ③ Proton synchro ④  0 decay Vietri(95),Waxman(95)

Synchrotron m mm  max max ∝  e -p ∝  e -p-1 ∝  e -2 ∝ (2-p)/2 ∝ 1/2 Electron energy spectrum Photon spectrum Dim or long burst: X-ray flash ? Sari,Piran &Narayan(98)

Synchrotron Self-Compton Klein-Nishina : ∝ 1-p/2 ∝ 1/2-p ∝ 1/2 Guetta&Granot(03) Synchrotron SSC

SSC Luminosity * For fast cooling, U  ~ U syn ×ln (t dyn /t cool ) 1/2 (One zone) SSC ~ Synchro Sari&Esin(01) Ioka(03)

Proton Synchrotron Vietri(97),Totani(98) e-synchrotron p-synchrotron proton injection fraction ~ eV protons emit

 0 Decay Waxman&Bahcall(97) Vietri(98) ~ MeV ~ eV Synchrotron  0 decay

GRB Spectrum Pair creation MeVGeVTeVPeV Electron synchtrotron SSC Proton synchrotron  0 decay

External Shock ? optically thick  → e + e  Central Engine Internal Shock External shock  >100 ISM Luminosity Time GRB Afterglow Kinetic energy ↓ Shock dissipation

e,p-synchrotron & SSC Zhang&Meszaros(01) Long-dash: e-sy, short-dash: p-sy, dots: SSC Times: trigger, 1 min, 1 hr, 1day, 1 month E 52 =1, p=2.2,  p =1,  0 =300, z=1 flat  e =10 -3,  B =0.5 n=100 cm -3  e =0.5,  B =0.01 n=1 cm -3  e =0.01,  B =0.1 n=1 cm -3 p-sy SSC e-sy

SSC vs p-synchrotron Zhang&Meszaros(01) (I ’ ): SSC<p-syn (II ’ ): SSC>p-syn for TeV SSC dominates in typical afterglow U p ~ U e,E 52 =1,n=1 p=2.2,t=1hr p-sy SSC

 0 Decay Bottcher&Dermer(98) p-syn, p  cascade, e + -syn,  0 decay Low energy: normalize to GRB (z=0.83) E 52 =1, n=1 cm -3,  0 =300,  p =1,  B =1, p=2 Cascade emission decays more slowly than SSC (protons have less cooling)

E 53 =1,  e =0.6,  B =0.01,p=2.5E 52 =1,  e =0.6,  B =0.01,p=2.5 E 53 =1,  e =0.6,  B =10 -4,p=2.5 E 53 =1,  e =0.6,  B =0.01,p=2.2 f-syn r-syn solid: r-SSC dot: f-SSC dash-dot: f-IC of r dash: r-IC of f s: Reverse shock emission Wang et al.(01) 4 IC in Early Afterglow

Off-Axis GRB Ioka&Nakamura(01) Fluence Energy  -ray X-ray

X-Ray Flash (XRF) X-ray  -ray Lamb et al.(03) XRF ~ GRB except for small E peak & fluence

Distance Indicators Sakamoto et al.(03) Yonetoku et al.(03) GRB spectrum Energy Peak Energy XRF We may select nearby bursts quickly

Summary IR background ⇒ Nearby bursts for TeV Afterglow is better than GRB for TeV High energy ~ Low energy SSC, p-Synchrotron,  0 decay, etc. ⇒ Physical state, Lorentz factor, etc. Nearby bursts ~ Off-axis ~ X-ray flash(?) Distance indicators ⇒ Nearby bursts