Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry,
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
A NEW 2 Σ Σ + TRANSITION OF PtF BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY LEAH C O'BRIEN, TAYLOR DAHMS, KAITLIN A WOMACK Department of Chemistry,
Int. Symp. Molecular Spectroscopy Ohio State Univ., 2005 The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers Collaborator: J. W.
Bri Gordon Steven T. Shipman New College of Florida
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
A COMPARISON OF THE MOLECULAR STRUCTURES OF C4H9OCH3, C4H9SCH3, C5H11OCH3, AND C5H11SCH3 USING MICROWAVE SPECTROSCOPY BRITTANY E. LONG, Chemistry Department,
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
The CP-FTMW Spectrum of Bromoperfluoroacetone
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Microwave spectra of 1- and 2-bromobutane
Methylstyrenes – Microwave Spectroscopy
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
MICROWAVE SPECTRA FOR THE THREE 13C1 ISOTOPOLOGUES OF PROPENE AND NEW ROTATIONAL CONSTANTS FOR PROPENE AND ITS 13C1 ISOTOPOLOGUES NORMAN C. CRAIG, Department.
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Methylindoles – Microwave Spectroscopy
AN INVESTIGATION OF THE DIPOLE FORBIDDEN TRANSITION EFFECTS IN BROMOFLUOROCARBONS AS IT PERTAINS TO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE USING CP-FTMW.
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Michal M. Serafin, Sean A. Peebles
N-METHYL INVERSION IN PSEUDO-PELLETIERINE
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean A. Peebles, Michael D. Foellmer, Jonathan M. Murray, Michal M. Serafin, Amanda L. Steber Department Of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL Gamil A. Guirgis, Richard Liberatore Department Of Chemistry And Biochemistry, The College Of Charleston, Charleston, SC James R. Durig, Charles J. Wurrey Department Of Chemistry, University Of Missouri - Kansas City, Kansas City, MO 64110

Introduction Three possible conformers Three possible conformers Possible methyl group internal rotation Possible methyl group internal rotation Multiple isotopologues Multiple isotopologues 70 Ge, 72 Ge, 73 Ge, 74 Ge, 76 Ge 70 Ge, 72 Ge, 73 Ge, 74 Ge, 76 Ge 28 Si, 29 Si, 30 Si 28 Si, 29 Si, 30 Si Only one isotope ( 73 Ge, I = 9/2) is quadrupolar Only one isotope ( 73 Ge, I = 9/2) is quadrupolar Model for fitting internal rotation Model for fitting internal rotation Ge or Si

Conformers cis gauche trans

Cyclopropylmethylgermane (CMG) Relative Energy / cm A / MHz B / MHz C / MHz  a / D  b / D  c / D  tot / D cis gauche trans MP2/6-311+G(d), no ZPE corrections

CMG Experimental Technique Samples synthesized at College of Charleston (SC) Samples synthesized at College of Charleston (SC) Fourier-transform microwave (FTMW) spectroscopy at Eastern Illinois University Fourier-transform microwave (FTMW) spectroscopy at Eastern Illinois University Liquid samples Liquid samples Vapor pressure = ~3 Torr Vapor pressure = ~3 Torr Transferred as vapor to glass bulb Transferred as vapor to glass bulb Concentration <0.5% in ~1 atm He/Ne Concentration <0.5% in ~1 atm He/Ne Optimizations at MP2/6-311+G(d) level Optimizations at MP2/6-311+G(d) level No ZPE corrections No ZPE corrections

Frequency / MHz A E 7.8% 36.5% 7.8% 27.4% 20.5% Combination of two data files 100 scans each S/N ~ 40

CMG Fit Using XIAM 1 1 XIAM: H.Hartwig and H.Dreizler, Z.Naturforsch, 51a (1996) 923. Parameter 70 Ge 72 Ge 73 Ge 74 Ge 76 Ge A / MHz (10) (10) (26) (8) (11) B / MHz (35) (4) (11) (26) (4) C / MHz (33) (4) (11) (25) (4)  J / kHz 0.618(8)0.622(8)0.48(4)0.600(6)0.597(9)  JK / kHz –4.4(9)–4.358(26)–4.7(7)–4.29(7)–4.18(10)  J / kHz 0.183(5)0.179(6)0.179(fixed)0.195(4)0.181(6) V 3 / kJ mol – (8)4.737(8)4.734(23)4.736(6)4.740(9) F 0 / GHz 159.8(3)159.1(3)159.2(7)159.18(21)159.3(3) I  / u Å (5)3.176(6)3.175(13)3.175(4)3.173(6)  / rad (4)0.8537(10)0.858(4)0.8580(7)0.8593(10) s.d. / kHz N

Ab Initio c Observed c  a / D (10)  b / D (4)  c / D (9)  tot / D (5) Ab Initio Observed A / MHz (7) B / MHz (3) C / MHz (2) I  / u Å 2 ~3.1 a 3.179(4) V 3 / kJ mol (6)  ia  (4)  ib  (4)  ic  b CMG Comparison With Ab Initio a Estimate, used as XIAM input b Angle  fixed at 3° c For 72 Ge a b c

73 Ge Quadrupole Coupling Constants Series of density functional theory predictions with varying basis sets – B3LYP worked best Series of density functional theory predictions with varying basis sets – B3LYP worked best Basis Set ClGeH 3  zz / MHz MeGeH 3  zz / MHz aug-cc-pvdz– G(2d,2p)– aug-cc-pvtz– G(3df,3pd)– aug-cc-pvqz– aug-cc-pv5z– Experiment 1 –93.032(15) 3 (max) 1 For many calculated quadrupole coupling constants and comparison with experimental data:

Frequency / MHz Ge E A E A E A Frequency / MHz

73 Ge A state E state Predicted B3LYP/ G(3df,3pd) Observed

Comparison with Calculated 73 Ge Coupling Constants ParameterExperimentalPredicted % Difference  aa / MHz 8.134(8)7.914 –2.7  bb –  cc / MHz 7.693(26)  aa / MHz 8.134(8)7.914 –2.7  bb / MHz –0.2205–0.099 –55  cc / MHz –7.9135–7.815 –1.2

Comparison of Experimental 73 Ge Coupling Constants Compound  zz (MHz) 1 ClGeH 3 –93.032(15) FGeH 3 –93.03(10) MeGeH 3 3 Cyclopropylmethylgermane ~9 – 10 HCCGeH For many calculated quadrupole coupling constants and comparison with experimental data:

Cyclopropylmethylsilane (CMS) Relative Energy / cm A / MHz B / MHz C / MHz  a / D  b / D  c / D  tot / D cis gauche trans MP2/6-311+G(d), no ZPE corrections

CMS Experimental Details Liquid samples Liquid samples Concentration ~1% in ~2.5 atm He/Ne Concentration ~1% in ~2.5 atm He/Ne Lines split into A and E states, some appear as “triplets” Lines split into A and E states, some appear as “triplets” Spectra of all three isotopologues assigned in natural abundance Spectra of all three isotopologues assigned in natural abundance 28 Si = 92.2%, 29 Si = 4.7%, 30 Si = 3.1% 28 Si = 92.2%, 29 Si = 4.7%, 30 Si = 3.1% Consistent only with gauche conformation Consistent only with gauche conformation Optimizations performed at MP2/6-311+G(d) Optimizations performed at MP2/6-311+G(d)

A E 28 Si 4 04 – scans Frequency / MHz

Parameter 28 Si 29 Si 30 Si A / MHz (9) (21) (21) B / MHz (6) (9) (9) C / MHz (6) (7) (7)  J / kHz 0.871(10) a  JK / kHz –7.40(11) –7.40 a  J / kHz 0.211(3) a V 3 / kJ mol –1 6.83(9)6.82(1)6.84(1) F 0 / GHz 164(3) 164 a I  / u Å (5) 3.09 a  / rad 0.745(4) a s.d. / kHz N CMS Fit Using XIAM a fixed at 28 Si value

CMS Spectroscopic Fitting Ab Initio Observed A / MHz (9) B / MHz (6) C / MHz (6) I  / u Å a 3.09(5) V 3 / kJ mol (9)  ia  (2)  ib  (2)  ic  (fixed) Ab Initio Observed  a / D (2)  b / D (11)  c / D (19)  tot / D (13) a Estimate, used as XIAM input

MeXH 2 (C 3 H 5 ) MeXH 3 MeXH 2 F Me 2 XH 2 Me 3 XCl Me 3 XBr Me 3 XI References: see extra slides at end of Powerpoint (too many to fit here!)

Conclusions Barriers to rotation comparable to similar species Barriers to rotation comparable to similar species Silane barriers typically higher than germane Silane barriers typically higher than germane B3LYP/ G(3df,3pd) appears to predict 73 Ge quadrupole coupling constants accurately B3LYP/ G(3df,3pd) appears to predict 73 Ge quadrupole coupling constants accurately Gauche conformer dominates for both CMG and CMS Gauche conformer dominates for both CMG and CMS Ab initio energies indicate that higher energy cis conformer could also be present Ab initio energies indicate that higher energy cis conformer could also be present

Acknowledgements ? ? ? Richard Liberatore (College of Charleston summer research funding)

Barrier to Rotation Compound V 3 / kJ mol -1 Reference 1 X = Ge X = Si MeXH 2 (C 3 H 5 ) 4.736(6)6.83(9) This work MeXH (11)6.67(20) Laurie 1959; Kivelson 1954 MeXH 2 F 3.94(8)6.52(13) Roberts 1976; Pierce 1958 Me 2 XH Thomas 1969; Niide 2004 Me 3 XCl (3)6.901(11) Schnell 2006; Merke 2002 Me 3 XBr 4.783(12)-- Schnell 2008 Me 3 XI (36) Merke See next slide for full references

References for Barrier Comparisons D. Kivelson, J. Chem. Phys. 22 (1954) V. W. Laurie, J. Chem. Phys. 30 (1959) I. Merke, W. Stahl, S. Kassi, D. Petotprez, G. Wlodarczak, J. Mol. Spect. 216 (2002) 437. I. Merke, A. Lüchow, W. Stahl, J. Mol. Struct (2006) 295. Y. Niide, M. Hayashi, J. Mol. Spect. 223 (2004) 152. L. Pierce, J. Chem. Phys. 29 (1958) 383. R. F. Roberts, R. Varma, J. F. Nelson, J. Chem. Phys. 64 (1976) M. Schnell, J.-U. Grabow, Phys. Chem. Chem. Phys. 8 (2006) M. Schnell, J.-U. Grabow, Chem. Phys. 343 (2008) 121. E. C. Thomas, V. W. Laurie, J. Chem. Phys. 50 (1969) 3512.

a) “  / E 2 (calc)” is the Stark coefficient obtained from a second-order perturbation theory calculation, using the fitted rotational constants given in Table 3.1. b) “% Difference” is obtained from “  / E 2 (calc)” – “  / E 2 (obs)” Table 3.6: Dipole moment data for the 72 Ge isotopomer. Transition  / E 2 (calc) a) (10 5 MHz cm 2 / V 2 )  / E 2 (obs) (10 5 MHz cm 2 / V 2 ) % Difference b) 1 10 ← 1 01 |M| = ← 0 00 |M| = ← 1 01 |M| = ← 1 01 |M| = ← 2 02 |M| = ← 2 02 |M| = ← 3 03 |M| = ← 3 03 |M| =  a = (10) D  b = 0.581(4) D  c = 0.305(9) D  total = 0.680(5) D

Table 3.7: Kraitchman single isotopic substitution coordinates (germane). All errors are to ±0.0001Å. 70 Ge 72 Ge 73 Ge 76 GeAb initio |a| / Å |b| / Å |c| / Å

Squared Dipole Component Dipole Component A / / B / / C / / Total / Debyes Transition |M| Observed Calculated Obs-Calc Percent 1( 1, 1) - 0( 0, 0) E E E ( 1, 2) - 1( 0, 1) E E E ( 1, 1) - 1( 0, 1) E E E ( 1, 0) - 0( 0, 0) E E E ( 1, 0) - 1( 0, 1) E E E ( 1, 1) - 1( 0, 1) E E E RMS E Silane Dipole Data