Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.

Slides:



Advertisements
Similar presentations
Optimal placement of MR dampers
Advertisements

MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Nazgol Haghighat Supervisor: Prof. Dr. Ir. Daniel J. Rixen
Slide# Ketter Hall, North Campus, Buffalo, NY Fax: Tel: x 2400 Control of Structural Vibrations.
Slide# Ketter Hall, North Campus, Buffalo, NY Fax: Tel: x 2400 Control of Structural Vibrations.
WELCOME TO THE WORLD OF FUZZY SYSTEMS. DEFINITION Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the concept.
Slide# Ketter Hall, North Campus, Buffalo, NY Fax: Tel: x 2400 Control of Structural Vibrations.
Fractional Order LQR for Optimal Control of Civil Structures Abdollah Shafieezadeh*, Keri Ryan*, YangQuan Chen+ *Civil and Environmental Engineering Dept.
1 Residual Vectors & Error Estimation in Substructure based Model Reduction - A PPLICATION TO WIND TURBINE ENGINEERING - MSc. Presentation Bas Nortier.
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Purdue University, West Lafayette, IN Phone: (765) Fax: (765) Investigation of the Effect of Transfer.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Mobile Robot Navigation Using Fuzzy logic Controller
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Structural Dynamics & Vibration Control Lab. 1 대용량 20 톤 MR 유체 감쇠기의 새로운 동적 모델 정형조, 한국과학기술원 건설환경공학과 최강민, 한국과학기술원 건설환경공학과 Guangqiang Yang, University of Notre.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
* 김 만철, 정 형조, 박 선규, 이 인원 * 김 만철, 정 형조, 박 선규, 이 인원 구조동역학 및 진동제어 연구실 구조동역학 및 진동제어 연구실 한국과학기술원 토목공학과 중복 또는 근접 고유치를 갖는 비비례 감쇠 구조물의 자유진동 해석 1998 한국전산구조공학회 가을.
Institute of Intelligent Power Electronics – IPE Page1 A Dynamical Fuzzy System with Linguistic Information Feedback Xiao-Zhi Gao and Seppo J. Ovaska Institute.
PART 9 Fuzzy Systems 1. Fuzzy controllers 2. Fuzzy systems and NNs 3. Fuzzy neural networks 4. Fuzzy Automata 5. Fuzzy dynamic systems FUZZY SETS AND FUZZY.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Advanced Science and Technology Letters Vol.32 (Architecture and Civil Engineering 2013), pp Development.
Response of MDOF structures to ground motion 1. If damping is well-behaving, or can be approximated using equivalent viscous damping, we can decouple.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
1 Artificial Neural Networks for Structural Vibration Control Ju-Tae Kim: Graduate Student, KAIST, Korea Ju-Won Oh: Professor, Hannam University, Korea.
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
대한토목공학회 추계 학술발표회 대구 2003 년 10 월 24 일 T. X. Nguyen, 한국과학기술원 건설 및 환경공학과 박사과정 김병완, 한국과학기술원 건설 및 환경공학과 박사후연구원 정형조, 세종대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과.
Probabilistic seismic hazard assessment for the pseudo-negative stiffness control of a steel base-isolated building: A comparative study with bilinear.
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Ground Motions and Liquefaction – The Loading Part of the Equation
Dynamics Primer Lectures Dermot O’Dwyer. Objectives Need some theory to inderstand general dynamics Need more theory understand the implementation of.
1 Lecture 4 The Fuzzy Controller design. 2 By a fuzzy logic controller (FLC) we mean a control law that is described by a knowledge-based system consisting.
RELIABLE DYNAMIC ANALYSIS OF TRANSPORTATION SYSTEMS Mehdi Modares, Robert L. Mullen and Dario A. Gasparini Department of Civil Engineering Case Western.
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Chapter 10 FUZZY CONTROL Chi-Yuan Yeh.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
VIDYA PRATISHTHAN’S COLLEGE OF ENGINEERING, BARAMATI.
Dynamic Analysis of Structures by
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
Design Spectra.
Department of Civil and Environmental Engineering
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
Fuzzy logic Introduction 3 Fuzzy Inference Aleksandar Rakić
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Robust Hybrid Control System
A Survey on State Feedback AMD Control
Modified Sturm Sequence Property for Damped Systems
Design Spectra.
a Bang-Bang Type Controller
Control of a Hybrid System using a -Synthesis Method
Presentation transcript:

Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원 건설 및 환경공학과 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교, 서울 2004 년 4 월 10 일

Structural Dynamics & Vibration Control Lab. 2 Outline Introduction Proposed Method Numerical Example Conclusions

Structural Dynamics & Vibration Control Lab. 3 Introduction Fuzzy theory has been recently proposed for the active structural control of civil engineering systems. The uncertainties of input data from the external loads and structural responses are treated in a much easier way by the fuzzy controller than by classical control theory. If offers a simple and robust structure for the specification of nonlinear control laws.

Structural Dynamics & Vibration Control Lab. 4 Modal control algorithm represents one control class in which the vibration is reshaped by merely controlling some selected vibration modes. Because civil structures has hundred or even thousand DOFs and its vibration is usually dominated by first few modes, modal control algorithm is especially desirable for reducing vibration of civil engineering structure.

Structural Dynamics & Vibration Control Lab. 5 Conventional Fuzzy Controller One should determine state variables which are used as inputs of the fuzzy controller. - It is very complicated and difficult for the designer to select state variables used as inputs among a lot of state variables. One should construct the proper fuzzy rule. - Control performance can be varied according to many kinds of fuzzy rules.

Structural Dynamics & Vibration Control Lab. 6 Objectives Development of active fuzzy controller on modal coordinates - An active modal-fuzzy control algorithm can be magnified efficiency caused by belonging their’ own advantages together.

Structural Dynamics & Vibration Control Lab. 7 Proposed Method Modal Approach Equations of motion for MDOF system Using modal transformation Modal equations (1) (2) (3)

Structural Dynamics & Vibration Control Lab. 8 Displacement where State space equation where (4) (5)

Structural Dynamics & Vibration Control Lab. 9 Control force Modal approach is desirable for civil engineering structure - Involve hundred or thousand DOFs - Vibration is dominated by the first few modes (6)

Structural Dynamics & Vibration Control Lab. 10 Structure Modal Structure Fuzzy controller Force output Active Modal-fuzzy Control System

Structural Dynamics & Vibration Control Lab. 11 Modal-fuzzy control system design Input variables Output variables Fuzzification Defuzzification Fuzzy inference Fuzzy inference : membership functions, fuzzy rule Input variables : mode coordinates Output variable : desired control force

Structural Dynamics & Vibration Control Lab. 12 Six-Story Building (Jansen and Dyke 2000) Numerical Example

Structural Dynamics & Vibration Control Lab. 13 Frequency Response Analysis Under the scaled El Centro earthquake  10 2  10 4 PSD of Displacement PSD of Velocity PSD of Acceleration 1 st Floor 6 th Floor

Structural Dynamics & Vibration Control Lab. 14 In frequency analysis, the first mode is dominant. -The responses can be reduced by modal-fuzzy control using the lowest one mode.

Structural Dynamics & Vibration Control Lab. 15 Active Modal-fuzzy Controller Design input variables : first mode coordinates output variable : desired control force Fuzzy inference Membership function - A type : triangular shapes (inputs: 5MFs, output: 5MFs) - B type : triangular shapes (inputs: 5MFs, output: 7MFs)  A type : for displacement reduction B type : for acceleration reduction

Structural Dynamics & Vibration Control Lab. 16 Fuzzy rule - A type NLNSZEPSPL NLPL PMPSZE NSPLPMPSZENS ZEPMPSZENSNM PS ZENSNMNL PLZENSNMNL - B type NLNSZEPSPL NLPL PS ZE NSPLPS ZENS ZEPS ZENS PS ZENS NL PLZENSNL

Structural Dynamics & Vibration Control Lab Fuzzy rule surface (A type)

Structural Dynamics & Vibration Control Lab. 18 Accel. (m/sec 2 ) Time(sec) Accel. (m/sec 2 ) Kobe (PGA: 0.834g) California (PGA: 0.156g) El Centro (PGA: 0.348g) Input Earthquakes

Structural Dynamics & Vibration Control Lab. 19 Normalized maximum floor displacement Normalized maximum inter-story drift Normalized peak floor acceleration Maximum control force normalized by the weight of the structure - This evaluation criteria is used in the second generation linear control problem for buildings (Spencer et al. 1997) Evaluation Criteria

Structural Dynamics & Vibration Control Lab. 20 Control Results Fig. 1 Peak responses of each floor of structure to scaled El Centro earthquake

Structural Dynamics & Vibration Control Lab. 21 Control strategyJ1J1 J2J2 J3J3 J4J4 Active Modal-fuzzy control (A type) Active Modal-fuzzy control (B type) Active Fuzzy control Normalized Controlled Maximum Response due to Scaled El Centro Earthquake J1J1 J2J2 J3J3 A type Fuzzy B type

Structural Dynamics & Vibration Control Lab. 22 Control strategyJ1J1 J2J2 J3J3 J4J4 Active Modal-fuzzy control (A type) Active Modal-fuzzy control (B type) Active fuzzy control High amplitude (the 120% El Centro earthquake) A type Fuzzy B type

Structural Dynamics & Vibration Control Lab. 23 Control strategyJ1J1 J2J2 J3J3 J4J4 Active Modal-fuzzy control (A type) Active Modal-fuzzy control (B type) Active fuzzy control Low amplitude (the 80% El Centro earthquake) A type Fuzzy B type

Structural Dynamics & Vibration Control Lab. 24 Control strategyJ1J1 J2J2 J3J3 J4J4 Active Modal-fuzzy control (A type) Active Modal-fuzzy control (B type) Active fuzzy control Scaled Kobe earthquake (1995) A type Fuzzy B type

Structural Dynamics & Vibration Control Lab. 25 Control strategyJ1J1 J2J2 J3J3 J4J4 Active Modal-fuzzy control (A type) Active Modal-fuzzy control (B type) Active fuzzy control Scaled California earthquake (1994) A type Fuzzy B type

Structural Dynamics & Vibration Control Lab. 26 Conclusions A new active modal-fuzzy control strategy for seismic response reduction is proposed. Verification of the proposed method has been investigated according to various amplitudes and frequency components. The performance of the proposed method is comparable to that of conventional method. The proposed method is more convenient and easy to apply to real system