橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B.

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

A.V. Koudinov, Yu. G. Kusrayev A.F. Ioffe Physico-Technical Institute St.-Petersburg, Russia L. C. Smith, J. J. Davies, D. Wolverson Department.
H. Okamura, M. Matsubara, T. Nanba – Kobe Univ.
Coherently induced ferromagnetism in Diluted Magnetic Semiconductors Southampton, OCES9-SCES2 September 7 st 2005 Joaquín Fernández-Rossier Dept. Física.
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
電気的に励起された 岩田順敬 ( 東大理 ) Cedric Simenel (CEA/Saclay) 原子核の時間発展 Thanks to: 大塚孝治 ( 東大理、東大 CNS 、理研 ) Michael Bender (CEA/Saclay)
微視的核構造反応模型を用いた 9Li 原子核の励起状態の研究
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Ultrafast Spectroscopy
Optical study of Spintronics in III-V semiconductors
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
Coherently photo-induced ferromagnetism in diluted magnetic semiconductors J. Fernandez-Rossier ( University of Alicante, UT ), C. Piermarocchi (MS), P.
A. Abdi, T. B. Hoang, S. Mackowski, L. M. Smith and H. E. Jackson Department of Physics, University of Cincinnati, Ohio J. M. Yarrison-Rice.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Optical fabrication and Optical manipulation of semiconductor nanoparticles Ashida lab. Nawaki Yohei.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Relation between photoluminescence and photoluminescence-excitation spectra in the linear response regime measured on two- dimensional electron gas T.
ITOH Lab. Hiroaki SAWADA
Institute of Materials Research and Engineering 3 Research Link, Singapore Website: Tel:
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
 stem electron density ~ 1×10 11 cm -2  Gate Voltage ( Vg ) 0.0 ~ 0.8V  wire electron density 0 ~ 4×10 5 cm -1  arm electron density 0 ~ 1.3×10 11.
Charge Carrier Related Nonlinearities
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
1 Optically Detected Magnetic Resonance (ODMR) and its Application to  -Conjugated Materials and Organic Light-Emitting Devices (OLEDs) Joseph Shinar.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Optical Characterization methods Rayleigh scattering Raman scattering transmission photoluminescence excitation photons At a glance  Transmission: “untouched”
Development and application of plasma- waveguide based soft x-ray lasers Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric,
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
超弱励起による原子平坦面をもつ 量子井戸の発光スペクトル Ji-Won Oh , Masahiro Yoshita , Hidefumi Akiyama, Loren Pfeiffer A , Ken West A Institute for solid state physics, University.
Itoh Lab. M1 Masataka YASUDA
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
Photoluminescence-excitation spectra on n-type doped quantum wire
光誘起キャリア緩和ダイナミクスおよびその偏光特性
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
T-shaped quantum-wire laser
野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A
Sample : GaAs (8nm) / Al 0.3 Ga 0.7 As (10nm) ×20 multiple quantum wells Light source : Mode-locked femtosecond Ti-sapphire laser Detection : Balancing.
Luminescence basics Types of luminescence
Band-edge divergence and Fermi-edge singularity in an n-type doped quantum wire. Toshiyuki Ihara Ph.D student of Akiyama group in Institute for Solid State.
Pulsed Propagation of Polariton Luminescence Ashida Lab. Kenta Kamizono M. Kuwata, T. Kuga, H. Akiyama, T. Hirano, and M. Matsuoka Phys. Rev. Lett. 61.
Abel Blazevic GSI Plasma Physics/TU Darmstadt June 8, 2004 Energy loss of heavy ions in dense plasma Goal: To understand the interaction of heavy ions.
Third-order optical nonlinearity in ZnO microcrystallite thin films Weili Zhang, H. Wang, K. S. Wong,a) Z. K. Tang, and G. K. L. Wong accepted for publication.
J.S. Colton, Universal scheme for opt.-detected T 1 measurements Universal scheme for optically- detected T 1 measurements (…and application to an n =
4 Excitons 4.1 The concept of excitons 4.2 Free excitons 4.3 Free excitons in external fields 4.4 Free excitons at high densities 4.5 Frenkel excitons.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Ultrabroadband spectroscopy in photo-excited semiconductors [1]Masaya Nagai, Makoto Kuwata-Gonokami. Journal of Luminescence 100 (2002) Tomohide.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.
Terahertz Charge Dynamics in Semiconductors James N. Heyman Macalester College St. Paul, MN.
Time-Resolved X-ray Absorption Spectroscopy of Warm Dense Matter J.W. Lee 1,2,6, L.J. Bae 1,2, K. Engelhorn 3, B. Barbel 3, P. Heimann 4, Y. Ping 5, A.
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Magneto-Photoluminescence of Carbon Nanotubes at Ultralow Temperatures
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
超平坦界面を有する GaAs(110)量子井戸の顕微分光
Presentation transcript:

橋本佑介 A,B 三野弘文 A 、山室智文 A 、蒲原俊樹 A 、神原大蔵 A 、松末俊夫 B Jigang Wang C 、 Chanjuan Sun C 、河野淳一郎 C 、嶽山正二郎 D 千葉大院自然 A 、千葉大工 B 、ライス大 ECE C 、東大物研 D Y. Hashimoto A,B H. Mino A, T. Yamamuro A, T. Kamohara A, D. Kanbara A, T. Matsusue B, J. Wang C, C. Sun C, J. Kono C, S. Takeyama D Graduate School of Science and Technology, Chiba Univ. A 、 Department of Engineering, Chiba Univ. B, ECE Dept., Rice Univ. C 、 ISSP, Univ. of Tokyo D 13aXD-14 High excitation effects in dilute magnetic semiconductor CdMnTe 希薄磁性半導体 CdMnTe における強励起効果

Magnetic Polarons Mn spin Exciton spin e h Free Exciton Magnetic Polaron (FEMP) Localization only by sp-d exchange interaction A Golnic, et. al. J. Phys. C16, 6073 (1983) M. Umehara, Phys. Rev. B 68, (2003) Photo-induced ferromagnetism via the FEMP

Free exciton magnetic polaron (FEMP) in CdMnTe High quality CdMnTe sample with low Mn concentration He-Ne laser 76 MHz Ti:Sapphire laser 250 kHz OPA laser 1 kHz OPA laser Exciton density – [cm-3] CW and Time-resolved Photoluminescence Current work : Alloy potential fluctuation : Small x = 5 ~ 10% → FEMP energy : Large S. Takeyama, J. of Crys. Growth, (1998) Mn Concentration [%] Localization energy 105 Alloy Potential fluctuation Localization energy of Magnetic Polaron

Free Exciton Magnetic Polarons FEMP Bipolaron Ferromagnetic Phase Transition via Free Exciton Magnetic Polarons ?

Experimental Setup for PL measurements Laser CCD or Streak camera Spectro- meter Sample 1.4 K Bulk Cd 1-x Mn x Te x = 5% Cd 1-y Mg y Te Cd 0.95 Mn 0.05 Te GaAs

Lasers LaserExciton density [/cm 3 ]rsrs Wavelength He-Ne2.2 x nm Ti: Sapphire2.8 x nm 250KHz OPA8.6 x nm 1KHz OPA2.2 x nm 1 kHz OPA 250 kHz OPA Ti: Sapphire He-Ne n rsrs Excitation intensity: 1mW, Focus size: 200  m, O.D. 1 a B = 6.7 nm  n Mott = 7.9 x [cm-3]

Low Excitation Limit Exciton Density [cm -3 ] Absorption: 4.2 K, PL: 1.4K PL Light source : He-Ne 633nm Photoluminescence Absorption Photon energy [eV] Distinct PL line of the FEMP appear !! FEMP binding energy  1.8 meV Ti: S 1 kHz OPA 250 kHz OPA He-Ne BX

Photoluminescence Exciton Density – [cm -3 ] Ti:S 1 kHz OPA 250 kHz OPA He-Ne Excitation intensity normalized PL Exciton density 10 15, [cm -3 ] FEMP PL intensity: Saturate FX PL intensity: Increase BX

Time Resolved Photoluminescence Exciton Density 8.6 x cm Ti: S 1 kHz OPA 250 kHz OPA He-Ne AB 1.674eV 1.667eV BXEHP

Time Resolved Photoluminescence Exciton Density 8.6 x cm -3 A: eV  ~ 150 ps  Biexciton B: eV  < 30 ps  ? A Inverse Boltzman Ti: S 1 kHz OPA 250 kHz OPA He-Ne

Many Body Effect of FEMPs Coupled two FEMPs has been expected to be more stable than single FEMP Bi-polaron Bi-exciton

Photoluminescence Exciton Density > Mott Density Ti: S 1 kHz OPA 250 kHz OPA He-Ne Electron hole plasma  I 4.2 Biexciton  I 1.6 I = 5.6 × [cm -3 ]

Exciton Density Dependence of Origin of Photoluminescence FEMP Electron hole Plasma Biexciton Ti: S 1 kHz OPA 250 kHz OPA He-Ne

Summary PL measurements Exciton density: – [cm -3 ] FEMP  Biexciton Electron hole plasma Future work Spin Dynamics Under Strong Excitation

Free Exciton Magnetic Polaron Hole mass: Electron mass: Hole 14.4Å Electron 64Å The number of Mn ion electron:481 hole:~5.5 Mn spin

Exciton Density Dependence When the exciton density is above cm -3 FEMP may disappear Ti: S 1 kHz OPA 250 kHz OPA He-Ne Excitation intensity normalized FEMP PL int. FEMP binding energy

Spin Relaxation Dynamics K

Time Resolved Photoluminescence Ti: S 1 kHz OPA 250 kHz OPA He-Ne kHz OPA laser76 MHz OPA laser 1.4K

Experimental Setup for PL measurements chopper Movable mirror Sample 13 K 1kHz OPA&CPA He-Ne Photodiode Spectro- meter Lock-in Amplifier

Discussions

Excitation Dependence of the PL Intensity Excited with Ti:Sapphire Laser

Peak position [eV] Binding Energy [meV] Absorption Biexciton FEMP Estimate by the E BX (4.1 meV) on CdSe

Purpose