Cosmological constant Einstein (1917) Universe baryons 5 27 68 “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960)

Slides:



Advertisements
Similar presentations
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
Advertisements

23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T/  2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Su Houng Lee 1. Mesons with one heavy quark 2. Baryons with one heavy quark 3. Quarkonium Arguments based on two point function  can be generalized to.
J. RuppertHot Quarks 2006, May 2006 What does the rho? Lessons from NA60's di-muon measurement. Jörg Ruppert Nuclear Theory, Department of Physics, Duke.
Koichi Hattori, RBRC Hadron and Hadron Interactions in QCD Mar. 9th, 2015 Charmonium spectroscopy in strong magnetic fields by QCD sum rules.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
QCD – from the vacuum to high temperature an analytical approach.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Chiral symmetry breaking in dense QCD
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
「第5回 J-PARC における高エネルギーハドロン物理」 J-PARC に活きる南部先生のアイデア 1.Introdution 2.Stability of hadronic matter 3. Chiral symmetry in vacuum & in medium 4. No summary.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
In-Medium Studies of Omega, Nucleon and Open Charm with QCD Sum Rules Ronny Thomas Dresden, September 2007 Forschungszentrum Dresden-Rossendorf / TU Dresden.
Higgs Mechanism at Finite Chemical Potential with Type-II Nambu-Goldstone Boson Based on arXiv: v2 [hep-ph] Yusuke Hama (Univ. Tokyo) Tetsuo Hatsuda.
Yusuke Hama (Univ. Tokyo) Collaborators Tetsuo Hatsuda (Univ. Tokyo)
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T 2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Su Houng Lee Quark condensate and the ’ mass  ‘ at finite temperature 1.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Two topics on dense quark matter
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
Review of recent highlights in lattice calculations at finite temperature and finite density Péter Petreczky Symmetries of QCD at T>0 : chiral and deconfinement.
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
1 Pairings in quark-baryonic matter Qun Wang University of Science and Technology of China  Introduction  CSC: from weak to strong couplings  Boson-fermion.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
The axial anomaly and the phases of dense QCD
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
1 Meson mass in nuclear medium Su Houng Lee Thanks to: Hatsuda + former collaborators + and to Kenji Morita(GSI) and Taesoo Song(A&M) 1.Phase transition,
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
1 Keitaro Nagata and Atsushi Hosaka Research Center for Nuclear Physics, Osaka Univ. Quark-Diquark approach for the nucleon and Roper resonance Workshop.
Lattice QCD and the strongly interacting matter Péter Petreczky Physics Department Zimányi School 2012 and Ortvay Colloquium, December 6, 2012, ELTE, Budapest.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
Study of sigma meson structure in D meson decay Masayasu Harada (Nagoya Univ.) at International Workshop on New Hadon Spectroscopy (November 21, 2012,
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and K.Yamawaki, Phys. Rev. Lett. 87, (2001)
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Lattice QCD at finite temperature Péter Petreczky
Raju Venugopalan Brookhaven National Laboratory
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
Extending the Linear Sigma Model to Nf = 3
Mesons in medium and QCD sum rule with dim 6 operators
Ginzburg-Landau approach to QCD phase transitions
Chengfu Mu, Peking University
Towards Understanding the In-medium φ Meson with Finite Momentum
Present status of bottom up model: sample works
Theory on Hadrons in nuclear medium
Presentation transcript:

Cosmological constant Einstein (1917) Universe baryons “Higgs” condensate Englert-Brout, Higgs (1964) bare quark 3 “Chiral” condensate Nambu (1960) quark 3 hadron QCD Spectral Functions and Dileptons T. Hatsuda (RIKEN) Condensates ⇔ Elementary excitations

Outline I.QCD symmetries II. Chiral order parameters III. In-medium hadrons IV. Summary “The Phase Diagram of Dense QCD” K. Fukushima + T.H., Rep. Prog. Phys. 74 (2011) “Hadron Properties in the Nuclear Medium” R. Hayano + T.H., Rev. Mod. Phys. 82 (2010) 2949 “QCD Constraints on Vector Mesons at finite T and Density” T.H., (1997)

Make an estimate before every calculation, try a simple physical argument (symmetry! invariance! conservation!) before every derivation, guess the answer to every paradox and puzzle. John Wheeler's First Moral Principle from "Spacetime Physics (Taylor – Wheeler, 2 nd ed.)”

Symmetry realization in QCD vacuum Chiral basis : QCD Lagrangian : classical QCD symmetry (m=0) Quantum QCD vacuum (m=0) Chiral condensate : spontaneous mass generation Axial anomaly : quantum violation of U(1) A

Dim.3 chiral condensate in QCD free LQCD Banks-Casher relation (1980) 0 0 Di Vecchia-Veneziano formula (1980) Gell-Mann-Oakes-Renner (GOR) formula (1968)

Examples Axial rotation : Axial Charge : Order parameters : NOT unique ! ・・・ II. Chiral order parameters Order parameter : = 0 (no SSB) ≠ 0 (SSB) θ

σ (600) Spectral evidence of SSB in QCD T.H. LBNL WS (1997)

ALEPH Collaboration, Phys. Rep. 421 (2005) fromτ-decays at LEP-1 ρ V (s)/s ρ A (s)/s [ρ V (s)-ρ A (s)] /s

Energy weighted “chiral” sum rules from QCD (m q =0) Dim.6 chiral condensate Koike, Lee + T.H., Nucl.Phys. B394 (1993) 221 Kapusta and Shuryak, PRD 49 (1994) 4694 Klingl, Kaiser and Weise, NPA 624 (1997) 527

-ρ pQCD (ω)) -ρ pQCD (ω))= C 4 -ρ pQCD (ω))= C 6 +C 6 ’ Dim.4 gluon condensate Dim.6 quark and gluon condensates Dilepton data (after Cocktail subtraction) Space-time average (by hydro or other models) Lattice QCD simulations (with gradient flow method) + Energy weighted “vector” sum rules from QCD (m q =0) III. In-medium hadrons

T.H. LBNL WS (1997) Slide p.31 c.f. GLS sum rule Adler sum rule Bjorken sum rule

 QGP Quark-Gluon Plasma Quark superfluid Hadron phase Chiral symmetry is always broken at finite density Baryon superfluid Hadron-Quark Continuity in dense QCD ( N c =3, N f =3 )

 condensates Continuity in the ground state Tachibana, Yamamoto + T.H., PRD78 (’08) Vector Mesons = Gluons ?! Baryons = Quarks ?! Possible fate of hadrons at high density ( N c =3, N f =3 ) Low  High   (8) & H  ’ (8) & H NGs Vectors Fermions excitation  V (9)  gluons (8)  Baryons (8) Quarks (9) Continuity in the excited state ? Schafer & Wilczek, PRL 82 (’99)

Nonet vector mesons (heavy) Octet vector mesons (light) Octet gluons in CFL: m g =1.362Δ Gusynin & Shovkovy, NPA700 (2002) Malekzadeh & Rischke, PRD73 (2006) T.H., Tachibana and Yamamoto, PRD78 (2008) Spectral continuity of vector mesons

At high density: At intermediate density: At low density: Mass formula from Finite Energy Sum Rules

IV. Summary I. Chiral order parameters not unique : Dim.3 condensate, Dim.6 condensate, etc II. In-medium hadrons ・ chiral restoration can be seen in spectral degeneracy ・ moment analysis is important for model independence ・ interesting possibility of hadron-quark crossover (Vector mesons = Gluons, Baryons = Quarks)

Back up slides

 Vector current :  Current correlation function : QCD sum rules in the superconducting medium  Operator Product Expansion (OPE) up to O(1/Q 6 ) : 4-quark condensate Diquark condensate Chiral condensate

Low  High   (8) & H  ’ (8) & H NGs Vectors Fermions excitation  V (9)  gluons (8)  baryons (8) Quarks (9) Continuity in the excited state?? Schafer and Wilczek, PRL 82 (1999) Generalized Gell-Mann-Oakes-Renner relation : Yamamoto, Tachibana, Baym + T.H., PR D76 (’07) ○ Continuity of vector mesons Tachibana, Yamamoto +T.H., PRD78 (2008) ○ Explicit realization of spectral continuity Possible fate of hadrons at high density ( N c =3, N f =3 ) Vector Mesons = Gluons ?! Baryons = Quarks ?!  condensates Continuity in the ground state Yamamoto, Tachibana, Baym + T.H., PRL97(’06), PRD76 (’07)

Low  High   (8) & H  ’ (8) & H NGs Vectors Fermions excitation  V (9)  gluons (8)  baryons (8) Quarks (9) Continuity in the excited state?? Schafer and Wilczek, PRL 82 (1999) Hadron-quark continuity in dense QCD  condensates Continuity in the ground state Hatsuda, Tachibana, Yamamoto & Baym, PRL 97 (2006)

T.H. Slide p.2 (1997)

I. Why SPF is important ?

FLAG Collaboration update( July 26, 2013) Running masses: m q (Q) quark masses (from lattice QCD) [MeV] 2GeV) mumu 2.16 (9)(7) mdmd 4.68 (14)(7) msms 93.8 (2.4) Running coupling: α s (Q)=g 2 /4π PDG (2012) I. Status of QCD

Hadron masses from Lattice QCD Improved Wilson + Iwasaki gauge action a = 0.09 fm, L=2.9 fm, m π =135 MeV PACS-CS Coll., Phys. Rev. D 81, (2010) 3% accuracy ⇒ L~9.6 fm, m π =135 MeV on K-computer underway

 Nambu-Goldstone bosons  Other hadrons Examples: QCDSR from Commutator by Hayata, PRD88 (2013) Gell-Mann-Oakes-Renner relation (1968) QCDSR from OPE by SVD (1979) III. In-medium hadrons In-vacuum

In-medium hadrons Complex pole (even for the pion) One-parameter example (T≠0) : * For the pion, f(x) and g(x) can be evaluated for small x. See e.g. Jido, Kunhihiro + T.H., Phys. Lett. B670 (2008) * In general, experimental inputs are really necessary. * Sometimes, spectral function is better to be studied.

Dim.3 Chiral condensate in the medium Dim.3 Chiral condensate in the medium Lattice QCD, (2+1)-flavor Borsanyi et al., JHEP 1009 (2010) Finite Temperature (LQCD) Nuclear chiral perturbation Kaiser et al., PRC 77 (2008) Finite baryon density (χPT)

Mesic nuclei 2 Individual properties of NG and “Higgs” bosons π, K, η (NG), σ (Higgs), η’ (anomaly) σ  2γ, η  2γ, η’  2γ Dileptons 3 Individual properties of vector bosons ρ, ω, and φ Precision/systematic studies (dispersion relation, different targets, …) 1 Spectral difference between chiral partners π-σ, ρ-a 1, ω-f 1, etc Determination of D=6 chiral condensates in the vacuum? Tau-decay in nuclei ? Wish list

T.H. Slide p.7 (1997)

III. Exact sum rules in QCD medium T.H. Slide p.20 (1997)

 Nambu-Goldstone bosons  Other hadrons Examples: QCDSR from Commutator by Hayata, PRD88 (2013) Gell-Mann-Oakes-Renner relation (1968) QCDSR from OPE by SVD (1979) III. In-medium hadrons In-vacuum