Chapter 4. Measure, Report, and Summarize Make intelligent choices See through the marketing hype Understanding underlying organizational aspects Why.

Slides:



Advertisements
Similar presentations
ISA Issues; Performance Considerations. Testing / System Verilog: ECE385.
Advertisements

CS1104: Computer Organisation School of Computing National University of Singapore.
TU/e Processor Design 5Z032 1 Processor Design 5Z032 The role of Performance Henk Corporaal Eindhoven University of Technology 2009.
1  1998 Morgan Kaufmann Publishers Chapter 2 Performance Text in blue is by N. Guydosh Updated 1/25/04*
100 Performance ENGR 3410 – Computer Architecture Mark L. Chang Fall 2006.
1 Introduction Rapidly changing field: –vacuum tube -> transistor -> IC -> VLSI (see section 1.4) –doubling every 1.5 years: memory capacity processor.
Chapter 4 Assessing and Understanding Performance Bo Cheng.
1 CSE SUNY New Paltz Chapter 2 Performance and Its Measurement.
Chapter 4 Assessing and Understanding Performance
Performance D. A. Patterson and J. L. Hennessey, Computer Organization & Design: The Hardware Software Interface, Morgan Kauffman, second edition 1998.
Computer ArchitectureFall 2007 © September 17, 2007 Karem Sakallah CS-447– Computer Architecture.
1 Chapter 4. 2 Measure, Report, and Summarize Make intelligent choices See through the marketing hype Key to understanding underlying organizational motivation.
1  1998 Morgan Kaufmann Publishers and UCB Performance CEG3420 Computer Design Lecture 3.
Computer ArchitectureFall 2007 © September 19, 2007 Karem Sakallah CS-447– Computer Architecture.
Chapter 4 Assessing and Understanding Performance
Fall 2001CS 4471 Chapter 2: Performance CS 447 Jason Bakos.
Lecture 3: Computer Performance
1 Chapter 4. 2 Measure, Report, and Summarize Make intelligent choices See through the marketing hype Key to understanding underlying organizational motivation.
1 ECE3055 Computer Architecture and Operating Systems Lecture 2 Performance Prof. Hsien-Hsin Sean Lee School of Electrical and Computer Engineering Georgia.
Computer Organization and Design Performance Montek Singh Mon, April 4, 2011 Lecture 13.
1 Computer Performance: Metrics, Measurement, & Evaluation.
1 Embedded Systems Computer Architecture. Embedded Systems2 Memory Hierarchy Registers Cache RAM Disk L2 Cache Speed (faster) Cost (cheaper per-byte)
1 CHAPTER 2 THE ROLE OF PERFORMANCE. 2 Performance Measure, Report, and Summarize Make intelligent choices Why is some hardware better than others for.
순천향대학교 정보기술공학부 이 상 정 1 4. Accessing and Understanding Performance.
Performance Chapter 4 P&H. Introduction How does one measure report and summarise performance? Complexity of modern systems make it very more difficult.
B0111 Performance Anxiety ENGR xD52 Eric VanWyk Fall 2012.
1 CPS4150 Chapter 4 Assessing and Understanding Performance.
Performance.  Measure, Report, and Summarize  Make intelligent choices  See through the marketing hype  Key to understanding underlying organizational.
10/19/2015Erkay Savas1 Performance Computer Architecture – CS401 Erkay Savas Sabanci University.
1 CS/EE 362 Hardware Fundamentals Lecture 9 (Chapter 2: Hennessy and Patterson) Winter Quarter 1998 Chris Myers.
1 Acknowledgements Class notes based upon Patterson & Hennessy: Book & Lecture Notes Patterson’s 1997 course notes (U.C. Berkeley CS 152, 1997) Tom Fountain.
Performance.
Computer Performance Computer Engineering Department.
1 CS465 Performance Revisited (Chapter 1) Be able to compare performance of simple system configurations and understand the performance implications of.
Performance Lecture notes from MKP, H. H. Lee and S. Yalamanchili.
CEN 316 Computer Organization and Design Assessing and Understanding Performance Mansour AL Zuair.
Morgan Kaufmann Publishers
1 COMS 361 Computer Organization Title: Performance Date: 10/02/2004 Lecture Number: 3.
1  1998 Morgan Kaufmann Publishers How to measure, report, and summarize performance (suorituskyky, tehokkuus)? What factors determine the performance.
September 10 Performance Read 3.1 through 3.4 for Wednesday Only 3 classes before 1 st Exam!
Performance – Last Lecture Bottom line performance measure is time Performance A = 1/Execution Time A Comparing Performance N = Performance A / Performance.
Computer Organization Instruction Set Architecture (ISA) Instruction Set Architecture (ISA), or simply Architecture, of a computer is the.
4. Performance 4.1 Introduction 4.2 CPU Performance and Its Factors
1  1998 Morgan Kaufmann Publishers Lectures for 2nd Edition Note: these lectures are often supplemented with other materials and also problems from the.
Lecture 5: 9/10/2002CS170 Fall CS170 Computer Organization and Architecture I Ayman Abdel-Hamid Department of Computer Science Old Dominion University.
Lec2.1 Computer Architecture Chapter 2 The Role of Performance.
L12 – Performance 1 Comp 411 Computer Performance He said, to speed things up we need to squeeze the clock Study
EGRE 426 Computer Organization and Design Chapter 4.
Performance Computer Organization II 1 Computer Science Dept Va Tech January 2009 © McQuain & Ribbens Defining Performance Which airplane has.
COMPUTER ARCHITECTURE & OPERATIONS I Instructor: Yaohang Li.
COD Ch. 1 Introduction + The Role of Performance.
BITS Pilani, Pilani Campus Today’s Agenda Role of Performance.
CPEN Digital System Design Assessing and Understanding CPU Performance © Logic and Computer Design Fundamentals, 4 rd Ed., Mano Prentice Hall © Computer.
Performance. Moore's Law Moore's Law Related Curves.
Computer Organization
Computer Architecture & Operations I
Performance Lecture notes from MKP, H. H. Lee and S. Yalamanchili.
September 2 Performance Read 3.1 through 3.4 for Tuesday
Defining Performance Which airplane has the best performance?
Computer Architecture & Operations I
Prof. Hsien-Hsin Sean Lee
CS2100 Computer Organisation
Computer Performance He said, to speed things up we need to squeeze the clock.
Performances of Computer Systems
Computer Performance Read Chapter 4
Performance.
Chapter 2: Performance CS 447 Jason Bakos Fall 2001 CS 447.
Computer Organization and Design Chapter 4
CS2100 Computer Organisation
Presentation transcript:

Chapter 4

Measure, Report, and Summarize Make intelligent choices See through the marketing hype Understanding underlying organizational aspects Why is some hardware better than others for different programs? What factors of system performance are hardware related? (e.g., Do we need a new machine, or a new operating system?) How does the machine's instruction set affect performance? Performance

Which of these airplanes has the best performance? AirplanePassengersRange (mi)Speed (mph) Boeing Boeing BAC/Sud Concorde Douglas DC

Response Time (latency) — How long does it take for my job to run? — How long does it take to execute a job? — How long must I wait for the database query? Throughput — How many jobs can the machine run at once? — What is the average execution rate? — How much work is getting done? If we upgrade a machine with a new processor what do we increase? Adding additional processors to a system that uses multiple processors for separate tasks Computer Performance: TIME, TIME, TIME

Elapsed Time –counts everything (disk and memory accesses, I/O, etc.) –a useful number, but often not good for comparison purposes CPU time –doesn't count I/O or time spent running other programs –can be broken up into system time, and user time Our focus: user CPU time –time spent executing the lines of code that are "in" our program Execution Time

For some program running on machine X, Performance X = 1 / Execution time X "X is n times faster than Y" Performance X / Performance Y = n Problem: –machine A runs a program in 20 seconds –machine B runs the same program in 25 seconds Book's Definition of Performance

Clock Cycles Instead of reporting execution time in seconds, we often use cycles Clock “ticks” indicate when to start activities (one abstraction): cycle time = time between ticks = seconds per cycle clock rate (frequency) = cycles per second (1 Hz. = 1 cycle/sec) A 4 Ghz. clock has a cycle time time

CPU execution time for a program = CPU clock cycles for the program X Clock cycle time Also inverse of Clock Cycle time is the Clock Rate So, to improve performance (everything else being equal) you can either (increase or decrease?) ________ the # of required cycles for a program, or ________ the clock cycle time or, said another way, ________ the clock rate. How to Improve Performance

Multiplication takes more time than addition Floating point operations take longer than integer ones Accessing memory takes more time than accessing registers Important point: changing the cycle time often changes the number of cycles required for various instructions (more later) Different numbers of cycles for different instructions

Our favorite program runs in 10 seconds on computer A, which has a 4 GHz. clock. We are trying to help a computer designer build a new machine B, that will run this program in 6 seconds. The designer can use new (or perhaps more expensive) technology to substantially increase the clock rate, but has informed us that this increase will affect the rest of the CPU design, causing machine B to require 1.2 times as many clock cycles as machine A for the same program. What clock rate should we tell the designer to target?" Don't Panic, can easily work this out from basic principles Example

Suppose that we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program. Which computer is faster for this program and by how much? CPU time = (Instruction count X CPI)/(Clock Rate)

A given program will require –some number of instructions (machine instructions) –some number of cycles –some number of seconds We have a vocabulary that relates these quantities: –cycle time (seconds per cycle) –clock rate (cycles per second) –CPI (cycles per instruction) a floating point intensive application might have a higher CPI –MIPS (millions of instructions per second) this would be higher for a program using simple instructions Now that we understand cycles