Thursday, Mach 10, 2011 1 PHYS 1444-02 Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #12 Chapter 26 Thursday Mar 10, 2011 Dr. Andrew Brandt HW6 Ch 26.

Slides:



Advertisements
Similar presentations
Series and Parallel Circuits
Advertisements

Kirchhoff’s laws. Kirchhoff’s laws: current law: voltage law: Equations.
Fundamentals of Circuits: Direct Current (DC)
Ch 191 Chapter 19 DC Circuits © 2002, B.J. Lieb Giancoli, PHYSICS,5/E © Electronically reproduced by permission of Pearson Education, Inc., Upper.
Monday, Mar. 6, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #12 Monday, Mar. 6, 2006 Dr. Jaehoon Yu EMF and Terminal.
T-Norah Ali Al-moneef King Saud University
Tuesday, Oct. 25, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #15 Tuesday, Oct. 25, 2011 Dr. Jaehoon Yu Kirchhoff’s Rules.
DC circuits Physics Department, New York City College of Technology.
7/2/20151 T-Norah Ali Al-moneef king saud university.
Chapter 26 DC Circuits. I Junction rule: The sum of currents entering a junction equals the sum of the currents leaving it Kirchhoff’s Rules.
Chapter 26 DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram.
Electric current and direct-current circuits A flow of electric charge is called an electric current.
Monday, Oct. 10, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #12 Monday, Oct. 10, 2005 Dr. Jaehoon Yu EMF and Terminal.
Thursday, Oct. 13, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #14 Thursday, Oct. 13, 2011 Dr. Jaehoon Yu EMF and Terminal.
Wednesday, Feb. 29, 2012 PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #12 Wednesday, Feb. 29, 2012 Dr. Jaehoon Yu Electric.
Tuesday, June 18, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #9 Tuesday, June 18, 2013 Dr. Jaehoon Yu Chapter 19 -Kirchhoff’s.
Lecture 2 Basic Circuit Laws
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
Week 04, Day 2 W10D2 DC Circuits Today’s Reading Assignment W10D2 DC Circuits & Kirchhoff’s Loop Rules Course Notes: Sections Class 09 1.
Series and Parallel Circuits Lesson 6. The two simplest ways to connect conductors and load are series and parallel circuits. 1. Series circuit - A circuit.
Y12 Review… Simple circuit…
Lecture 6 Direct Current Circuits Chapter 18 Outline Energy Source in Circuits Resistor Combinations Kirchhoff’s Rules RC Circuits.
Ch 191 Chapter 19 DC Circuits © 2006, B.J. Lieb Some figures electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New.
Monday, July 6, 2009PHYS , Summer 2009 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #8 Monday, July 6, 2009 Dr. Jaehoon Yu Chapter 19 -EMFs.
a b  R C I I R  R I I r V Yesterday Ohm’s Law V=IR Ohm’s law isn’t a true law but a good approximation for typical electrical circuit materials Resistivity.
10/9/20151 General Physics (PHY 2140) Lecture 10  Electrodynamics Direct current circuits parallel and series connections Kirchhoff’s rules Chapter 18.
DC Circuits AP Physics Chapter 18. DC Circuits 19.1 EMF and Terminal Voltage.
Monday, June 17, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #8 Monday, June 17, 2013 Dr. Jaehoon Yu Chapter 18 –Superconductivity.
Chapter 19 DC Circuits. Objective of the Lecture Explain Kirchhoff’s Current and Voltage Laws. Demonstrate how these laws can be used to find currents.
Monday, Mar. 5, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #13 Monday, Mar. 5, 2012 Dr. Jaehoon Yu Kirchhoff’s Rules.
Lecture 11-1 Electric Current Current = charges in motion Magnitude rate at which net positive charges move across a cross sectional surface Units: [I]
Direct Current Circuits A current is maintained in a closed circuit by an emf (electromotive force) Battery. An emf forces electrons to move against the.
TUesday, April 12, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Review #2 Tuesday April 12, 2011 Dr. Andrew Brandt TEST IS THURSDAY 4/14.
Chapter 20 Electric Circuits Electromotive Force and Current Within a battery, a chemical reaction occurs that transfers electrons from one terminal.
 Solving a circuit consists of finding unknown currents, the current direction, and the voltages in a circuit.  A multiloop circuit has more than one.
“Kirchhoff's Rules” Abdulrajab Layagin. Who is Gustav Kirchhoff?  A German physicist who contributed to the fundamental understanding of electrical circuits.
CH Review Series resistors have the same current; the total voltage is “divided” across the resistors. Parallel resistors have the same voltage;
19-2 EMF and Terminal Voltage A battery or generator, or other electrical energy creation device, is called the seat or source of electromotive force,
Series and Parallel Circuits
Tuesday October 16, PHYS Dr. Andrew Brandt PHYS 1444 – Section 003 Lecture #13 Tuesday October 16, 2012 Dr. Andrew Brandt Chapter 26 Chapter.
Chapter 27 Lecture 23: Circuits: I. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
Electric Current and Circuits Ch. 18. Electric Current A net flow of charge Variable = I Unit = Ampere (A) I = Δq/Δt Conventional current is the direction.
Lectures 7 to 10 The Electric Current and the resistance Electric current and Ohm’s law The Electromotive Force and Internal Resistance Electrical energy.
Mondady Feb. 10, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #8 Monday February 10, 2014 Dr. Andrew Brandt CH 18 Electric Power.
Wednesday, July 1, 2009PHYS , Summer 2009 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #7 Wednesday, July 1, 2009 Dr. Jaehoon Yu Chapter 19.
DC Circuits AP Physics Chapter 18. DC Circuits 19.1 EMF and Terminal Voltage.
Lecture 16: WED 18 FEB DC circuits Ch Physics 2102 Jonathan Dowling.
Lecture 20: FRI 09 OCT Circuits II Physics 2113 Jonathan Dowling.
Internal Resistance Review Kirchhoff’s Rules DC Electricity.
Kirchhoff’s Rules.
PHYS 1441 – Section 001 Lecture #11
Direct Current Circuits
PHYS 1442 – Section 001 Lecture #7
PHYS 1444 – Section 003 Lecture #15
Chapter 26:DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram.
Internal Resistance in EMF
Kirchhoff’s Rules.
Circuit in DC Instruments
Devil physics The baddest class on campus IB Physics
EMF and Terminal Voltage
DC circuits Physics /3/2018 Lecture X.
G10 Review… Simple circuit…
PHYS 1444 – Section 003 Lecture #12
PHYS 1444 – Section 002 Lecture #16
PHYS 1444 – Section 002 Lecture #16
PHYS 1444 – Section 002 Lecture #15
PHYS 1444 – Section 002 Lecture #15
PHYS 1444 – Section 501 Lecture #12
PHYS 1442 – Section 004 Lecture #9
Phys102 Lecture 12 Kirchhoff’s Rules
Presentation transcript:

Thursday, Mach 10, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #12 Chapter 26 Thursday Mar 10, 2011 Dr. Andrew Brandt HW6 Ch 26 is due Weds. Mar. 23 ***Test 2 will be Thurs April 14 on Ch 26-29*** Energy loss in Resistors Kirchoff’s Laws

Thursday, Mach 10, PHYS Dr. Andrew Brandt Parallel Capacitor arrangements Resistor and Capacitor Arrangements Series Resistor arrangements Series Capacitor arrangements Parallel Resistor arrangements

Thursday, Mach 10, PHYS Dr. Andrew Brandt Example 26 – 2 Series or parallel? (a) The light bulbs in the figure are identical and have identical resistance R. Which configuration produces more light? (b) Which way do you think the headlights of a car are wired? (a) What are the equivalent resistances for the two cases? Series The bulbs get brighter when the total power transformed is larger. series ParallelSo parallel So parallel circuit provides brighter lighting. (b) Car’s headlights are in parallel to provide brighter lighting and also to prevent both lights going out at the same time when one burns out. So what is bad about parallel circuits?Uses more energy in a given time.

Thursday, Mach 10, Example 26 – 5 Current in one branch. What is the current flowing through the 500-  resistor in the figure? What do we need to find first? Thus the total current in the circuit is We need to find the total current. To do that we need to compute the equivalent resistance. R eq of the small parallel branch is: R eq of the circuit is: The voltage drop across the parallel branch is The current flowing across 500-  resistor is therefore What is the current flowing in the 700-  resister? What is the current flowing in the 400-  resister? PHYS Dr. Andrew Brandt

Thursday, Mach 10, PHYS Dr. Andrew Brandt Some circuits are very complicated to analyze using the simple rules for combining resistors –G. R. Kirchhoff devised two rules to deal with complicated circuits. Kirchhoff’s Rules Kirchhoff’s rules are based on conservation of charge and energy –Kirchhoff’s 1 st rule: Junction rule, charge conservation. At any junction point, the sum of all currents entering the junction must equal to the sum of all currents leaving the junction. In other words, charge is conserved At junction a in the figure, I3 I3 goes into the junction while I1 I1 and I2I2 leaves: I3 I3 = I 1 + I2I2

Thursday, Mach 10, PHYS Dr. Andrew Brandt Kirchhoff’s 2 nd Rule Kirchoff’s 2 nd rule: Loop rule, uses conservation of energy. –The sum of the changes in potential around any closed path of a circuit must be zero.

7 The current in the circuit in the figure is I =12/690 =0.017A. –Point e is the highest potential point while point d is the lowest potential. –When the test charge starts at e and returns to e, the total potential change is 0. –Between point e and a, no potential change since there is no source of potential nor any resistance. –Between a and b, there is a 400  resistance, causing IR=0.017*400 =6.8V drop. –Between b and c, there is a 290  resistance, causing IR=0.017*290 =5.2V drop. –Since these are voltage drops, we use negative sign for these, -6.8V and -5.2V. –No change between c and d while from d to e there is +12V change. –Thus the total change of the voltage through the loop is: -6.8V-5.2V+12V=0V. Kirchhoff’s 2 nd Rule Thursday, Mach 10, 2011PHYS Dr. Andrew Brandt

Thursday, Mach 10, PHYS Dr. Andrew Brandt 1.Determine the flow of currents at the junctions. It does not matter which direction you assign a current. If the value of the current after completing the calculations are negative, it means you chose the wrong direction 2.Write down the current equation based on Kirchhoff’s 1 st rule at various junctions. 3.Choose closed loops in the circuit 4.Write down the potential in each interval of the junctions, keeping the sign properly. 5.Write down the potential equations for each loop. 6.Solve the equations for unknowns. Using Kirchhoff’s Rules

Thursday, Mach 10, PHYS Dr. Andrew Brandt Example 26 – 8 Use Kirchhoff’s rules. Calculate the currents I 1, I2 I2 and I3.I3. The directions of the current through the circuit is not known a priori but since the current tends to move away from the positive terminal of a battery, we arbitrarily choose the direction of the currents as shown. This is the same for junction d as well, so it gives no additional information. We have three unknowns so we need three equations. Using Kirchhoff’s junction rule at point a, we obtain Now apply K’s second rule to the top loop ahdcba The total voltage change in loop ahdcba is.

Thursday, Mach 10, PHYS Dr. Andrew Brandt Example 26 – 8, cnt’d So the three equations are Now the 2nd rule on the bottom loop agfedcba. The total voltage change in loop agfedcba We can obtain the three current by solving these equations for I 1, I2 I2 and I3.I3.

11 When two or more sources of emfs, such as batteries, are connected in series –The total voltage is the algebraic sum of their voltages, if their direction is the same V ab = =3.0V in figure (a). –If the batteries are arranged in an opposite direction, the total voltage is the difference between them EMFs in Series and Parallel: Charging a Battery V ac =20 – 12=8.0V in figure (b) Connecting batteries in opposite direction might seem wasteful. This, however, is the way a battery charger works. Since the 20V battery is at a higher voltage, it forces charges into 12V battery Some battery are rechargeable since their chemical reactions are reversible but most the batteries can not reverse their chemical reactions Why would you consider parallel arrangement Parallel arrangements (c) are used only to increase currents.