1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively,

Slides:



Advertisements
Similar presentations
CHOW TEST AND DUMMY VARIABLE GROUP TEST
Advertisements

EC220 - Introduction to econometrics (chapter 5)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: slope dummy variables Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: interactive explanatory variables Original citation: Dougherty, C. (2012)
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
EC220 - Introduction to econometrics (chapter 7)
EC220 - Introduction to econometrics (chapter 2)
00  sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: testing a hypothesis relating to a regression coefficient (2010/2011.
EC220 - Introduction to econometrics (chapter 1)
1 INTERPRETATION OF A REGRESSION EQUATION The scatter diagram shows hourly earnings in 2002 plotted against years of schooling, defined as highest grade.
TESTING A HYPOTHESIS RELATING TO A REGRESSION COEFFICIENT This sequence describes the testing of a hypotheses relating to regression coefficients. It is.
SLOPE DUMMY VARIABLES 1 The scatter diagram shows the data for the 74 schools in Shanghai and the cost functions derived from a regression of COST on N.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: precision of the multiple regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: semilogarithmic models Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
DERIVING LINEAR REGRESSION COEFFICIENTS
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
TOBIT ANALYSIS Sometimes the dependent variable in a regression model is subject to a lower limit or an upper limit, or both. Suppose that in the absence.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy variable classification with two categories Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: two sets of dummy variables Original citation: Dougherty, C. (2012) EC220.
1 PREDICTION In the previous sequence, we saw how to predict the price of a good or asset given the composition of its characteristics. In this sequence,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: the effects of changing the reference category Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: dummy classification with more than two categories Original citation:
DUMMY CLASSIFICATION WITH MORE THAN TWO CATEGORIES This sequence explains how to extend the dummy variable technique to handle a qualitative explanatory.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: Tobit models Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 CONTINUOUS RANDOM VARIABLES A discrete random variable is one that can take only a finite set of values. The sum of the numbers when two dice are thrown.
1 INTERACTIVE EXPLANATORY VARIABLES The model shown above is linear in parameters and it may be fitted using straightforward OLS, provided that the regression.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
1 TWO SETS OF DUMMY VARIABLES The explanatory variables in a regression model may include multiple sets of dummy variables. This sequence provides an example.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
CONFLICTS BETWEEN UNBIASEDNESS AND MINIMUM VARIANCE
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Simple regression model: Y =  1 +  2 X + u 1 We have seen that the regression coefficients b 1 and b 2 are random variables. They provide point estimates.
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: exercise 5.2 Original citation: Dougherty, C. (2012) EC220 - Introduction.
POSSIBLE DIRECT MEASURES FOR ALLEVIATING MULTICOLLINEARITY 1 What can you do about multicollinearity if you encounter it? We will discuss some possible.
(1)Combine the correlated variables. 1 In this sequence, we look at four possible indirect methods for alleviating a problem of multicollinearity. POSSIBLE.
1 Y SIMPLE REGRESSION MODEL Suppose that a variable Y is a linear function of another variable X, with unknown parameters  1 and  2 that we wish to estimate.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
COST 11 DUMMY VARIABLE CLASSIFICATION WITH TWO CATEGORIES 1 This sequence explains how you can include qualitative explanatory variables in your regression.
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
1 NONLINEAR REGRESSION Suppose you believe that a variable Y depends on a variable X according to the relationship shown and you wish to obtain estimates.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
GRAPHING A RELATIONSHIP IN A MULTIPLE REGRESSION MODEL The output above shows the result of regressing EARNINGS, hourly earnings in dollars, on S, years.
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
1 COMPARING LINEAR AND LOGARITHMIC SPECIFICATIONS When alternative specifications of a regression model have the same dependent variable, R 2 can be used.
VARIABLE MISSPECIFICATION II: INCLUSION OF AN IRRELEVANT VARIABLE In this sequence we will investigate the consequences of including an irrelevant variable.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
VARIABLE MISSPECIFICATION I: OMISSION OF A RELEVANT VARIABLE In this sequence and the next we will investigate the consequences of misspecifying the regression.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

1 CHANGES IN THE UNITS OF MEASUREMENT Suppose that the units of measurement of Y or X are changed. How will this affect the regression results? Intuitively, we would anticipate that nothing of substance will be changed, and this is correct.

2 We will demonstrate this for the estimates of the regression coefficients in this section, and we will trace the implications for the rest of the regression output in due course. We begin by supposing that the true and fitted models are as shown above. CHANGES IN THE UNITS OF MEASUREMENT

3 We now suppose that the units of measurement of Y are changed, with the new measure, Y*, being a linear function of the old one. CHANGES IN THE UNITS OF MEASUREMENT

4 Typically, a change of measurement involves a simple multiplicative scaling, such as when we convert pounds into grams. CHANGES IN THE UNITS OF MEASUREMENT

5 However, one occasionally encounters a full linear transformation. Conversion of temperatures from degrees Celsius to degrees Fahrenheit is an example. CHANGES IN THE UNITS OF MEASUREMENT

6 Regressing Y* on X, the new slope coefficient b 2 * is as shown. CHANGES IN THE UNITS OF MEASUREMENT

7 We substitute for Y* from the linear relationship defining it. CHANGES IN THE UNITS OF MEASUREMENT

8 The 1 terms cancel. 2 is a common factor in the numerator. CHANGES IN THE UNITS OF MEASUREMENT

9 We find that the new slope coefficient is equal to the original one, multiplied by 2. CHANGES IN THE UNITS OF MEASUREMENT

10 This is logical. A unit change in Y is the same as a change of 2 units in Y*. According to the regression equation, a unit change in X leads to a change of b 2 units in Y, so it should lead to a change of 2 b 2 units in Y*. CHANGES IN THE UNITS OF MEASUREMENT

11 The effect on the intercept will be left as an exercise. The effect of a change in the units of measurement of X will also be left as an exercise. CHANGES IN THE UNITS OF MEASUREMENT

12 However, we will consider a special case of a change in the measurement of X. Often the intercept in a regression equation has no sensible interpretation because X = 0 is distant from the data range. CHANGES IN THE UNITS OF MEASUREMENT

13 CHANGES IN THE UNITS OF MEASUREMENT The earnings function discussed in the previous slideshow is an example, with the intercept actually being negative. EARNINGS = – S ^

14 CHANGES IN THE UNITS OF MEASUREMENT Here is the output for the regression.. reg EARNINGS S Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | _cons |

15 CHANGES IN THE UNITS OF MEASUREMENT The intercept is a meaningless negative number. Literally, it is the predicted level of hourly earnings for those with zero years of schooling, but nobody in the sample had fewer than seven years of schooling and only 31 had fewer than twelve years.. reg EARNINGS S Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | _cons |

16 CHANGES IN THE UNITS OF MEASUREMENT Sometimes it is useful to deal with this problem by defining X* as the deviation of X about its sample mean.

17 Note that, by definition, the sample sum of X i * is 0, and hence the mean value of X* is zero.. CHANGES IN THE UNITS OF MEASUREMENT

18 If we regress Y on X* instead of X, the slope coefficient is not affected. CHANGES IN THE UNITS OF MEASUREMENT

19 The intercept is now the fitted value of Y at the sample mean of X. This is the sample mean of Y and it may be more informative for analytical purposes. CHANGES IN THE UNITS OF MEASUREMENT

20 We will investigate the effect of demeaning schooling int he wage equation example. First, we find the sample mean. (In Stata, we use the ‘sum’ command.) We find that the mean is years, and we define a new variable SDEV by subtracting from S sum S Variable | Obs Mean Std. Dev. Min Max S | gen SDEV = S CHANGES IN THE UNITS OF MEASUREMENT

21 Here is the output using SDEV instead of S. The intercept, 19.63, now gives the predicted earnings of those with mean schooling.. reg EARNINGS SDEV Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] SDEV | _cons | CHANGES IN THE UNITS OF MEASUREMENT

22 Comparing the new output with the original, we see that, apart from the standard error and t statistic of the intercept, nothing else has changed. CHANGES IN THE UNITS OF MEASUREMENT. reg EARNINGS SDEV Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] SDEV | _cons | reg EARNINGS S Source | SS df MS Number of obs = F( 1, 538) = Model | Prob > F = Residual | R-squared = Adj R-squared = Total | Root MSE = EARNINGS | Coef. Std. Err. t P>|t| [95% Conf. Interval] S | _cons |

23 This is exactly as one would expect. The only effect of the demeaning of S is to move the vertical axis to the point that was formerly As a consequence, the intercept becomes Otherwise, the regression line is unaffected. CHANGES IN THE UNITS OF MEASUREMENT EARNINGS = S ^

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 1.4 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course EC2020 Elements of Econometrics