1 Introduction to Database Systems CSE 444 Lecture 04: SQL April 7, 2008.

Slides:



Advertisements
Similar presentations
1 Lecture 4: Advanced SQL. 2 INTERSECT and EXCEPT: (missing from MySQL) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A, S.B FROM S) (SELECT R.A, R.B FROM.
Advertisements

1 Lecture 5: SQL Schema & Views. 2 Data Definition in SQL So far we have see the Data Manipulation Language, DML Next: Data Definition Language (DDL)
SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: SQL92, SQL2, SQL3. Vendors support.
CSE 544 Constraints Lecture #3 Friday, January 13, 2011 Dan Suciu , Winter
1 Lecture 03: Advanced SQL. 2 Outline Unions, intersections, differences Subqueries, Aggregations, NULLs Modifying databases, Indexes, Views Reading:
1 Introduction to Database Systems CSE 444 Lecture 05: Views, Constraints April 9, 2008.
1 Data Definition in SQL So far we have see the Data Manipulation Language, DML Next: Data Definition Language (DDL) Data types: Defines the types. Data.
SQL April 25 th, Agenda Grouping and aggregation Sub-queries Updating the database Views More on views.
1 Lecture 06: SQL Friday, January 14, Outline Indexes Defining Views (6.7) Constraints (Chapter 7) We begin E/R diagrams (Chapter 2)
1 Lecture 05: SQL Wednesday, October 8, Outline Outer joins (6.3.8) Database Modifications (6.5) Defining Relation Schema in SQL (6.6) Indexes.
Matthew P. Johnson, OCL2, CISDD CUNY, January OCL2 Oracle 10g: SQL & PL/SQL Session #5 Matthew P. Johnson CISDD, CUNY January, 2005.
1 INTERSECT and EXCEPT: (may no be in MySQL) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A, S.B FROM S) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A,
Database Modifications A modification command does not return a result as a query does, but it changes the database in some way. There are three kinds.
Murali Mani SQL DDL and Oracle utilities. Murali Mani Datatypes in SQL INT (or) INTEGER FLOAT (or) REAL DECIMAL (n, m) CHAR (n) VARCHAR (n) DATE, TIME.
M.P. Johnson, DBMS, Stern/NYU, Spring C : Database Management Systems Lecture #15 M.P. Johnson Stern School of Business, NYU Spring, 2005.
M.P. Johnson, DBMS, Stern/NYU, Sp20041 C : Database Management Systems Lecture #12 Matthew P. Johnson Stern School of Business, NYU Spring, 2004.
End of SQL XML April 22 th, Null Values If x=Null then 4*(3-x)/7 is still NULL If x=Null then x=“Joe” is UNKNOWN Three boolean values: –FALSE =
SQL Overview Defining a Schema CPSC 315 – Programming Studio Spring 2008 Project 1, Lecture 3 Slides adapted from those used by Jeffrey Ullman, via Jennifer.
Correlated Queries SELECT title FROM Movie AS Old WHERE year < ANY (SELECT year FROM Movie WHERE title = Old.title); Movie (title, year, director, length)
CSE544: SQL Monday 3/27 and Wednesday 3/29, 2006.
Integrity Constraints An important functionality of a DBMS is to enable the specification of integrity constraints and to enforce them. Knowledge of integrity.
+ From Relational Algebra to SQL W2013 CSCI 2141.
Exercises Product ( pname, price, category, maker) Purchase (buyer, seller, store, product) Company (cname, stock price, country) Person( per-name, phone.
1 Lecture 4: More SQL Monday, January 13th, 2003.
1 Lecture 7: End of Normal Forms Outerjoins, Schema Creation and Views Wednesday, January 28th, 2004.
SQL April 22 th, Agenda Union, intersections Sub-queries Modifying the database Views Modifying views Reusing views.
SQL Overview Defining a Schema CPSC 315 – Programming Studio Slides adapted from those used by Jeffrey Ullman, via Jennifer Welch Via Yoonsuck Choe.
More SQL: Complex Queries, Triggers, Views, and Schema Modification UMM AL QURA UNIVERSITY College of Computer Dr. Ali Al Najjar 1.
1 Lecture 04: SQL Wednesday, January 11, Outline Two Examples Nulls (6.1.6) Outer joins (6.3.8) Database Modifications (6.5)
1 Lecture 6: Views Friday, January 17th, Updating Views How can I insert a tuple into a table that doesn’t exist? Employee(ssn, name, department,
1 SQL Constraints and Programming. 2 Agenda Constraints in SQL Systems aspects of SQL.
SQL SQL Review. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92.
SQL. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92 (a.k.a.
1 SQL Constraints and Programming. 2 Agenda Constraints in SQL Systems aspects of SQL.
1 SQL Additional Notes. 2  1 Group and Aggregation*  2 Execution Order*  3 Join*  4 Find the maximum  5 Line Format SQL Additional Notes *partially.
CMPT 258 Database Systems The Relationship Model (Chapter 3)
1 Lecture 5: Outerjoins, Schema Creation and Views Wednesday, January 15th, 2003.
IS2803 Developing Multimedia Applications for Business (Part 2) Lecture 5: SQL I Rob Gleasure robgleasure.com.
Aggregation SELECT Sum(price) FROM Product WHERE manufacturer=“Toyota” SQL supports several aggregation operations: SUM, MIN, MAX, AVG, COUNT Except COUNT,
1 Lecture 06 Data Modeling: E/R Diagrams Wednesday, January 18, 2006.
1 Lecture 05: SQL Wednesday, October 8, Outline Database Modifications (6.5) Defining Relation Schema in SQL (6.6) Indexes Defining Views (6.7)
SQL. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92 (a.k.a.
More SQL: Complex Queries, Triggers, Views, and Schema Modification
CPSC-310 Database Systems
SQL.
Rob Gleasure robgleasure.com
Lecture 05: SQL Wednesday, January 12, 2005.
Cours 7: Advanced SQL.
Lecture 04: SQL Monday, January 10, 2005.
Modifying the Database
Monday 3/27 and Wednesday 3/29, 2006
Introduction to Database Systems CSE 444 Lecture 04: SQL
Cse 344 January 12th –joins.
SQL OVERVIEW DEFINING A SCHEMA
Lecture 4: Advanced SQL – Part II
Rob Gleasure robgleasure.com
SQL Introduction Standard language for querying and manipulating data
CMPT 354: Database System I
Lecture 12: SQL Friday, October 20, 2000.
Lectures 7: Introduction to SQL 6
Lecture 4: SQL Thursday, January 11, 2001.
Integrity Constraints
Lecture 4: SQL Wednesday, April 10, 2002.
Rob Gleasure robgleasure.com
CSE544 SQL Monday, April 5, 2004.
Lecture 04: SQL Monday, October 6, 2003.
Lecture 05: SQL Wednesday, October 9, 2002.
Lecture 14: SQL Wednesday, October 31, 2001.
Presentation transcript:

1 Introduction to Database Systems CSE 444 Lecture 04: SQL April 7, 2008

2 Outline The Project Nulls (6.1.6) Outer joins (6.3.8) Database Modifications (6.5)

3 The Project Application: –Boutique online music and book store Project: –Create database, access through a Web interface –Import real data and develop inventory logic –Customer checkout –Advanced functionality (TBD)

4 The Project Team: –Two people –Find partner now! Tools: –SQL Server 2005 –Visual Studio 2005 –C# 2.0 –ASP.NET 2.0

5 The Project Phase 1: posted now, due April 18 Create a schema Populate the database: fake data for now Access through a simple Web interface

6 NULLS in SQL Whenever we don’t have a value, we can put a NULL Can mean many things: –Value does not exists –Value exists but is unknown –Value not applicable –Etc. The schema specifies for each attribute if can be null (nullable attribute) or not How does SQL cope with tables that have NULLs ?

7 Null Values If x= NULL then 4*(3-x)/7 is still NULL If x= NULL then x=“Joe” is UNKNOWN In SQL there are three boolean values: FALSE = 0 UNKNOWN = 0.5 TRUE = 1

8 Null Values C1 AND C2 = min(C1, C2) C1 OR C2 = max(C1, C2) NOT C1 = 1 – C1 Rule in SQL: include only tuples that yield TRUE SELECT * FROM Person WHERE (age < 25) AND (height > 6 OR weight > 190) SELECT * FROM Person WHERE (age < 25) AND (height > 6 OR weight > 190) E.g. age=20 heigth=NULL weight=200

9 Null Values Unexpected behavior: Some Persons are not included ! SELECT * FROM Person WHERE age = 25 SELECT * FROM Person WHERE age = 25

10 Null Values Can test for NULL explicitly: –x IS NULL –x IS NOT NULL Now it includes all Persons SELECT * FROM Person WHERE age = 25 OR age IS NULL SELECT * FROM Person WHERE age = 25 OR age IS NULL

11 Outerjoins Explicit joins in SQL = “inner joins”: Product(name, category) Purchase(prodName, store) SELECT Product.name, Purchase.store FROM Product JOIN Purchase ON Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product JOIN Purchase ON Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product, Purchase WHERE Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product, Purchase WHERE Product.name = Purchase.prodName Same as: But Products that never sold will be lost !

12 Outerjoins Left outer joins in SQL: Product(name, category) Purchase(prodName, store) SELECT Product.name, Purchase.store FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName SELECT Product.name, Purchase.store FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName

13 NameCategory Gizmogadget CameraPhoto OneClickPhoto ProdNameStore GizmoWiz CameraRitz CameraWiz NameStore GizmoWiz CameraRitz CameraWiz OneClickNULL ProductPurchase

14 Application Compute, for each product, the total number of sales in ‘September’ Product(name, category) Purchase(prodName, month, store) SELECT Product.name, count(*) FROM Product, Purchase WHERE Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name SELECT Product.name, count(*) FROM Product, Purchase WHERE Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name What’s wrong ?

15 Application Compute, for each product, the total number of sales in ‘September’ Product(name, category) Purchase(prodName, month, store) SELECT Product.name, count(*) FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name SELECT Product.name, count(*) FROM Product LEFT OUTER JOIN Purchase ON Product.name = Purchase.prodName and Purchase.month = ‘September’ GROUP BY Product.name Now we also get the products who sold in 0 quantity

16 Outer Joins Left outer join: –Include the left tuple even if there’s no match Right outer join: –Include the right tuple even if there’s no match Full outer join: –Include the both left and right tuples even if there’s no match

17 Modifying the Database Three kinds of modifications Insertions Deletions Updates Sometimes they are all called “updates”

18 Insertions General form: Missing attribute  NULL. May drop attribute names if give them in order. INSERT INTO R(A1,…., An) VALUES (v1,…., vn) INSERT INTO Purchase(buyer, seller, product, store) VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’, ‘The Sharper Image’) INSERT INTO Purchase(buyer, seller, product, store) VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’, ‘The Sharper Image’) Example: Insert a new purchase to the database:

19 Insertions INSERT INTO PRODUCT(name) SELECT DISTINCT Purchase.product FROM Purchase WHERE Purchase.date > “10/26/01” INSERT INTO PRODUCT(name) SELECT DISTINCT Purchase.product FROM Purchase WHERE Purchase.date > “10/26/01” The query replaces the VALUES keyword. Here we insert many tuples into PRODUCT

20 Insertion: an Example prodName is foreign key in Product.name Suppose database got corrupted and we need to fix it: namelistPricecategory gizmo100gadgets prodNamebuyerNameprice cameraJohn200 gizmoSmith80 cameraSmith225 Task: insert in Product all prodNames from Purchase Product Product(name, listPrice, category) Purchase(prodName, buyerName, price) Product(name, listPrice, category) Purchase(prodName, buyerName, price) Purchase

21 Insertion: an Example INSERT INTO Product(name) SELECT DISTINCT prodName FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) INSERT INTO Product(name) SELECT DISTINCT prodName FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) namelistPricecategory gizmo100Gadgets camera--

22 Insertion: an Example INSERT INTO Product(name, listPrice) SELECT DISTINCT prodName, price FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) INSERT INTO Product(name, listPrice) SELECT DISTINCT prodName, price FROM Purchase WHERE prodName NOT IN (SELECT name FROM Product) namelistPricecategory gizmo100Gadgets camera200- camera ??225 ??- Depends on the implementation

23 Deletions DELETE FROM PURCHASE WHERE seller = ‘Joe’ AND product = ‘Brooklyn Bridge’ DELETE FROM PURCHASE WHERE seller = ‘Joe’ AND product = ‘Brooklyn Bridge’ Factoid about SQL: there is no way to delete only a single occurrence of a tuple that appears twice in a relation. Example:

24 Updates UPDATE PRODUCT SET price = price/2 WHERE Product.name IN (SELECT product FROM Purchase WHERE Date =‘Oct, 25, 1999’); UPDATE PRODUCT SET price = price/2 WHERE Product.name IN (SELECT product FROM Purchase WHERE Date =‘Oct, 25, 1999’); Example:

25 Data Definition in SQL So far we have see the Data Manipulation Language, DML Next: Data Definition Language (DDL) Data types: Defines the types. Data definition: defining the schema. Create tables Delete tables Modify table schema Indexes: to improve performance

26 Creating Tables CREATE TABLE Person( name VARCHAR(30), social-security-number INT, age SHORTINT, city VARCHAR(30), gender BIT(1), Birthdate DATE ); CREATE TABLE Person( name VARCHAR(30), social-security-number INT, age SHORTINT, city VARCHAR(30), gender BIT(1), Birthdate DATE );

27 Deleting or Modifying a Table Deleting: ALTER TABLE Person ADD phone CHAR(16); ALTER TABLE Person DROP age; ALTER TABLE Person ADD phone CHAR(16); ALTER TABLE Person DROP age; Altering: (adding or removing an attribute). What happens when you make changes to the schema? Example: DROP Person; Example: Exercise with care !!

28 Default Values Specifying default values: CREATE TABLE Person( name VARCHAR(30), social-security-number INT, age SHORTINT DEFAULT 100, city VARCHAR(30) DEFAULT ‘Seattle’, gender CHAR(1) DEFAULT ‘?’, Birthdate DATE CREATE TABLE Person( name VARCHAR(30), social-security-number INT, age SHORTINT DEFAULT 100, city VARCHAR(30) DEFAULT ‘Seattle’, gender CHAR(1) DEFAULT ‘?’, Birthdate DATE The default of defaults: NULL

29 Indexes REALLY important to speed up query processing time. Suppose we have a relation Person (name, age, city) Sequential scan of the file Person may take long SELECT * FROM Person WHERE name = “Smith” SELECT * FROM Person WHERE name = “Smith”

30 Create an index on name: Indexes AdamBettyCharles….Smith…. B+ trees have fan-out of 100s: max 4 levels ! Will discuss in the second half of this course

31 Creating Indexes CREATE INDEX nameIndex ON Person(name) Syntax:

32 Creating Indexes Indexes can be useful in range queries too: B+ trees help in: Why not create indexes on everything? CREATE INDEX ageIndex ON Person (age) SELECT * FROM Person WHERE age > 25 AND age < 28

33 Creating Indexes Indexes can be created on more than one attribute: SELECT * FROM Person WHERE age = 55 AND city = “Seattle” Helps in: SELECT * FROM Person WHERE city = “Seattle” But not in: CREATE INDEX doubleindex ON Person (age, city) Example: SELECT * FROM Person WHERE age = 55 and even in:

34 The Index Selection Problem Why not build an index on every attribute ? On every pair of attributes ? Etc. ? The index selection problem is hard: balance the query cost v.s. the update cost, in a large application workload