Warm Up Evaluate. 1. 100(1.08) 20 2. 100(0.95) 25 3. 100(1 – 0.02) 10 4. 100(1 + 0.08) –10 ≈ 466.1 ≈ 27.74 ≈ 81.71 ≈ 46.32.

Slides:



Advertisements
Similar presentations
7-1 Exponential Functions, Growth and Decay Warm Up
Advertisements

4-1:Exponential Growth and Decay
Exponential Growth Section 8.1. Exponential Function  f(x) = ab x where the base b is a positive number other than one.  Graph f(x) = 2 x  Note the.
Exponential Functions Using Growth and Decay Factors.
State the domain and range of each function. 3.1 Graphs of Exponential Functions.
Objectives: 1.Be able to graph the exponential growth parent function. 2.Be able to graph all forms of the exponential growth function Critical Vocabulary:
Exponential Functions
7.1 Exponential Functions, Growth, and Decay
4.1 Graph Exponential GrowthFunctions p. 228 What is an exponential function? What is exponential growth function? What is an asymptote? What information.
3.2 Graph Exponential Decay Functions P. 236 What is exponential decay? How can you recognize exponential growth and decay from the equation? What is the.
Objective: Students will be able to write and evaluate exponential expressions to model growth and decay situations.
4-1 exponential functions, growth and decay
Objectives & Vocabulary
Objectives Write equivalent forms for exponential and logarithmic functions. Write, evaluate, and graph logarithmic functions.
Exponential Growth Exponential Decay
Holt Algebra Logarithmic Functions Write equivalent forms for exponential and logarithmic functions. Write, evaluate, and graph logarithmic functions.
Exponential Functions Section 1. Exponential Function f(x) = a x, a > 0, a ≠ 1 The base is a constant and the exponent is a variable, unlike a power function.
8-1 Exploring Exponent Models Objectives:  To identify exponential growth and decay.  To define the asymptote  To graph exponential functions  To find.
Chapter 1.3 Exponential Functions. Exponential function F(x) = a x The domain of f(x) = a x is (-∞, ∞) The range of f(x) = a x is (0, ∞)
Warm Up Evaluate (1.08) (0.95) (1 – 0.02)10
Use mental math to evaluate.
Holt Algebra Exponential Functions, Growth, and Decay Holt Algebra 2 Read each slide. Answer the hidden questions. Evaluate (1.08) (0.95)
Evaluate (1.08) (0.95) (1 – 0.02) ( )–10.
Holt Algebra Exponential Functions, Growth, and Decay Warm Up Evaluate (1.08) (0.95) (1 – 0.02) ( ) –10.
Exponential Functions and Their Graphs
M 112 Short Course in Calculus Chapter 1 – Functions and Change Sections 1.5 Exponential Functions V. J. Motto.
8.5 Exponential Growth and 8.6 Exponential Decay FUNctions
State the domain and range of each function Exponential Growth and Decay.
Opener-NEW SHEET-11/29 Evaluate (1.08) (0.95)25
Objective Write and evaluate exponential expressions to model growth and decay situations.
8-2: Exponential Decay Objective Ca Standard 12: Students know the laws of fractional exponents, understand exponential functions and use these functions.
Logarithmic Functions
Growth and Decay: Integral Exponents
Exponential Decay Functions 4.2 (M3) p Warm-Up Evaluate the expression without using a calculator. ANSWER –1 ANSWER –3 2.– ANSWER.
Holt McDougal Algebra Exponential Functions, Growth, and Decay 4-1 Exponential Functions, Growth and Decay Holt Algebra 2 Warm Up Warm Up Lesson.
Holt Algebra Exponential Functions, Growth, and Decay 7-1 Exponential Functions, Growth and Decay Holt Algebra 2 Warm Up Warm Up Lesson Presentation.
7.1 E XPONENTIAL F UNCTIONS, G ROWTH, AND D ECAY Warm Up Evaluate (1.08) (1 – 0.02) ( ) –10 ≈ ≈ ≈ Write.
Holt McDougal Algebra 2 Exponential Functions, Growth, and Decay Exponential Functions, Growth and Decay Holt Algebra 2Holt McDougal Algebra 2 How do.
8-1: Exponential Growth Objective CA 12: Students know the laws of fractional exponents, understanding exponential functions, and use these functions in.
Exponential Functions,
Exponential Functions Chapter 10, Sections 1 and 6.
Lesson 20 – Introducing and Applying Base e. Pre-Calculus 2/22/20161Pre-Calculus.
8.1 & 8.2 Exponential Functions 3/10/2014. In this lesson we will learn … What an exponential function is. Difference between exponential growth and decay.
7-1 Exponential Functions
Warm-Up Exercises Evaluate the expression without using a calculator. ANSWER –1 ANSWER –3 2.–
Warm Up  Complete the Grok Activity on the back of your homework (the one with people at the top)
6.2 Exponential Functions Objective: Classify an exponential function as representing exponential growth or exponential decay. Calculate the growth of.
Holt McDougal Algebra Exponential Functions, Growth, and Decay Warm Up Evaluate (1.08) (0.95) (1 – 0.02) ( )
Holt Algebra Exponential Functions, Growth, and Decay exponential function baseasymptote exponential growth and decay Vocabulary Write and evaluate.
Section Vocabulary: Exponential function- In general, an equation of the form, where, b>0, and, is known as an exponential function. Exponential.
Holt Algebra Linear, Quadratic, and Exponential Models Warm Up Find the slope and y-intercept of the line that passes through (4, 20) and (20, 24).
Algebra 2 Exploring Exponential Models Lesson 7-1.
Chapter 7 Exponential and Logarithmic Functions. 7-1 Exponential Growth.
Objectives: The student will be able to… 1)Graph exponential functions. 2)Solve exponential equations and inequalities.
Holt Algebra Exponential Functions, Growth, and Decay 7-1 Exponential Functions, Growth and Decay Holt Algebra 2 Warm Up Warm Up Lesson Presentation.
Exponential Growth & Decay
4-1 Exponential Functions, Growth and Decay Warm Up
Do Now: - Evaluate round to the nearest hundredth
Exponential Functions, Growth and Decay
7-1 Exponential Functions, Growth and Decay Warm Up
4-1 Exponential Functions, Growth and Decay Warm Up
4-1 Exponential Functions, Growth and Decay Warm Up
7-1 Exponential Functions, Growth and Decay Warm Up
Moore’s law, a rule used in the computer industry, states that the number of transistors per integrated circuit (the processing power) doubles every year.
4-1 Exponential Functions, Growth and Decay Warm Up
LEARNING GOALS – LESSON 7.1
4-1 Exponential Functions, Growth and Decay Warm Up
7-1 Exponential Functions, Growth and Decay Warm Up
Exponential Functions, Growth and Decay
7-1 Exponential Functions, Growth and Decay Warm Up
Presentation transcript:

Warm Up Evaluate (1.08) (0.95) (1 – 0.02) ( ) –10 ≈ ≈ ≈ ≈ 46.32

Write and evaluate exponential expressions to model growth and decay situations. Objective

exponential function base asymptote exponential growth exponential decay Vocabulary

Moore’s law, a rule used in the computer industry, states that the number of transistors per integrated circuit (the processing power) doubles every year. Beginning in the early days of integrated circuits, the growth in capacity may be approximated by this table.

Growth that doubles every year can be modeled by using a function with a variable as an exponent. This function is known as an exponential function. The parent exponential function is f(x) = b x, where the base b is a constant and the exponent x is the independent variable.

The graph of the parent function f(x) = 2 x is shown. The domain is all real numbers and the range is {y|y > 0}.

Notice as the x-values decrease, the graph of the function gets closer and closer to the x-axis. The function never reaches the x-axis because the value of 2 x cannot be zero. In this case, the x-axis is an asymptote. An asymptote is a line that a graphed function approaches as the value of x gets very large or very small.

A function of the form f(x) = ab x, with a > 0 and b > 1, is an exponential growth function, which increases as x increases. When 0 < b < 1, the function is called an exponential decay function, which decreases as x increases.

Negative exponents indicate a reciprocal. For example: Remember! In the function y = b x, y is a function of x because the value of y depends on the value of x. Remember!

Tell whether the function shows growth or decay. Then graph. Example 1A: Graphing Exponential Functions Step 1 Find the value of the base. The base,,is less than 1. This is an exponential decay function.

Example 1A Continued Step 2 Graph the function by using a table of values. x f(x)

Tell whether the function shows growth or decay. Then graph. Example 1B: Graphing Exponential Functions Step 1 Find the value of the base. g(x) = 100(1.05) x The base, 1.05, is greater than 1. This is an exponential growth function. g(x) = 100(1.05) x

Example 1B Continued Step 2 Graph the function by using a graphing calculator.

Tell whether the function p(x) = 5(1.2 x ) shows growth or decay. Then graph. Step 1 Find the value of the base. Check It Out! Example 1 p(x) = 5(1.2 x ) The base, 1.2, is greater than 1. This is an exponential growth function.

Step 2 Graph the function by using a table of values. x–12–8– f(x) Check It Out! Example 1 Continued

You can model growth or decay by a constant percent increase or decrease with the following formula: In the formula, the base of the exponential expression, 1 + r, is called the growth factor. Similarly, 1 – r is the decay factor.

Clara invests $5000 in an account that pays 6.25% interest per year. After how many years will her investment be worth $10,000? Example 2: Economics Application Step 1 Write a function to model the growth in value of her investment. f(t) = a(1 + r) t Exponential growth function. Substitute 5000 for a and for r. f(t) = 5000( ) t f(t) = 5000(1.0625) t Simplify.

Example 2 Continued Step 2 When graphing exponential functions in an appropriate domain, you may need to adjust the range a few times to show the key points of the function. Step 3 Use the graph to predict when the value of the investment will reach $10,000. Use the feature to find the t-value where f(t) ≈ 10,000.

Example 2 Continued Step 3 Use the graph to predict when the value of the investment will reach $10,000. Use the feature to find the t-value where f(t) ≈ 10,000. The function value is approximately 10,000 when t ≈ The investment will be worth $10,000 about years after it was purchased.

In 1981, the Australian humpback whale population was 350 and increased at a rate of 14% each year since then. Write a function to model population growth. Use a graph to predict when the population will reach 20,000. P(t) = a(1 + r) t Substitute 350 for a and 0.14 for r. P(t) = 350( ) t P(t) = 350(1.14) t Simplify. Exponential growth function. Check It Out! Example 2

Graph the function. Use to find when the population will reach 20,000. It will take about 31 years for the population to reach 20,000. Check It Out! Example 2 Continued

Homework! Holt Chapter 7 Section 1 Page #1-17, 21, 22