Gravitational Lensing

Slides:



Advertisements
Similar presentations
Analysis of a New Gravitational Lens FLS Yoon Chan Taak Feb Survey Science Group Workshop
Advertisements

CMB: Sound Waves in the Early Universe Before recombination: Universe is ionized. Photons provide enormous pressure and restoring force. Photon-baryon.
H.-W. Rix, Vatican 2003 Gravitational Lensing as a Tool in Cosmology A Brief History of Lensing 1704 Newton (in Optics): „Do not bodies act upon light.
Massive Spectroscopy for Dark Energy in the South Josh Frieman MS-DESI Meeting, LBNL, March 2013 Some details in DESpec White Paper arXiv: (Abdalla,
3D dark matter map z=0.5 z=0.7 z=1 z=0.3 Right ascension Declination z=0 Mapping dark matter with weak gravitational lensing Richard Massey CalTech.
The National Science Foundation The Dark Energy Survey J. Frieman, M. Becker, J. Carlstrom, M. Gladders, W. Hu, R. Kessler, B. Koester, A. Kravtsov, for.
Cosmic Shear with HST Jason Rhodes, JPL Galaxies and Structures Through Cosmic Times Venice Italy March 27, 2006 with Richard Massey, Catherine Heymans.
July 7, 2008SLAC Annual Program ReviewPage 1 Weak Lensing of The Faint Source Correlation Function Eric Morganson KIPAC.
July 7, 2008SLAC Annual Program ReviewPage 1 Future Dark Energy Surveys R. Wechsler Assistant Professor KIPAC.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
On the Distribution of Dark Matter in Clusters of Galaxies David J Sand Chandra Fellows Symposium 2005.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Dark Energy with 3D Cosmic Shear Dark Energy with 3D Cosmic Shear Alan Heavens Institute for Astronomy University of Edinburgh UK with Tom Kitching, Patricia.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
LSST and the Dark Sector: Image processing challenges Tony Tyson University of California, Davis ADASS September 25, 2007.
EMerlin lenses and starbursts from the widest-area Herschel and SCUBA-2 surveys Stephen Serjeant, July 17th 2007.
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
Lens Galaxy Environments Neal Dalal (IAS), Casey R. Watson (Ohio State) astro-ph/ Who cares? 2.What to do 3.Results 4.Problems! 5.The future.
The Effect of Baryons and Dissipation on the Matter Power Spectrum Douglas Rudd (KICP, U. Chicago) Andrew Zentner & Andrey Kravtsov astro-ph/
Weak Gravitational Lensing by Large-Scale Structure Alexandre Refregier (Cambridge) Collaborators: Richard Ellis (Caltech) David Bacon (Cambridge) Richard.
Galaxy-Galaxy Lensing What did we learn? What can we learn? Henk Hoekstra.
Impact of intrinsic alignments on cosmic shear Shearing by elliptical galaxy halos –SB + Filipe Abdalla astro-ph/ Intrinsic alignments and photozs.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Eric V. Linder (arXiv: v1). Contents I. Introduction II. Measuring time delay distances III. Optimizing Spectroscopic followup IV. Influence.
Science Impact of Sensor Effects or How well do we need to understand our CCDs? Tony Tyson.
Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni Martin Kilbinger Andisheh Mahdavi.
Cosmic shear results from CFHTLS Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni.
P5 – April 20, The Dark Energy Survey Josh Frieman White Papers submitted to Dark Energy Task Force: astro-ph/ Theoretical & Computational.
Cosmic scaffolding and the growth of structure Richard Massey (CalTech ) with Jason Rhodes (JPL), David Bacon (Edinburgh), Joel Berg é (Saclay), Richard.
Constraining the Dark Side of the Universe J AIYUL Y OO D EPARTMENT OF A STRONOMY, T HE O HIO S TATE U NIVERSITY Berkeley Cosmology Group, U. C. Berkeley,
Intrinsic ellipticity correlation of luminous red galaxies and misalignment with their host dark matter halos The 8 th Sino – German workshop Teppei O.
Observational Probes of Dark Energy Timothy McKay University of Michigan Department of Physics Observational cosmology: parameters (H 0,  0 ) => evolution.
A Short Talk on… Gravitational Lensing Presented by: Anthony L, James J, and Vince V.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
Center for Cosmology and Astro-Particle Physics Great Lakes Cosmology Workshop VIII, June, 1-3, 2007 Probing Dark Energy with Cluster-Galaxy Weak Lensing.
Dark Energy Probes with DES (focus on cosmology) Seokcheon Lee (KIAS) Feb Section : Survey Science III.
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
1 System wide optimization for dark energy science: DESC-LSST collaborations Tony Tyson LSST Dark Energy Science Collaboration meeting June 12-13, 2012.
Testing the Shear Ratio Test: (More) Cosmology from Lensing in the COSMOS Field James Taylor University of Waterloo (Waterloo, Ontario, Canada) DUEL Edinburgh,
The masses and shapes of dark matter halos from galaxy- galaxy lensing in the CFHTLS Henk Hoekstra Mike Hudson Ludo van Waerbeke Yannick Mellier Laura.
The Structure Formation Cookbook 1. Initial Conditions: A Theory for the Origin of Density Perturbations in the Early Universe Primordial Inflation: initial.
Cosmology with Gravitaional Lensing
DES Cluster Simulations and the ClusterSTEP Project M.S.S. Gill (OSU / CBPF / SLAC) In collaboration with: J. Young, T.Eifler, M.Jarvis, P.Melchior and.
Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White.
Constraining Cosmography with Cluster Lenses Jean-Paul Kneib Laboratoire d’Astrophysique de Marseille.
On ‘cosmology-cluster physics’ degeneracies and cluster surveys (Applications of self-calibration) Subha Majumdar Canadian Institute for Theoretical Astrophysics.
LSST and Dark Energy Dark Energy - STScI May 7, 2008 Tony Tyson, UC Davis Outline: 1.LSST Project 2.Dark Energy Measurements 3.Controlling Systematic Errors.
HST ACS data LSST: ~40 galaxies per sq.arcmin. LSST CD-1 Review SLAC, Menlo Park, CA November 1 - 3, LSST will achieve percent level statistical.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
Weak Lensing Alexandre Refregier (CEA/Saclay) Collaborators: Richard Massey (Cambridge), Tzu-Ching Chang (Columbia), David Bacon (Edinburgh), Jason Rhodes.
Cosmology with Large Optical Cluster Surveys Eduardo Rozo Einstein Fellow University of Chicago Rencontres de Moriond March 14, 2010.
Complementary Probes of Dark Energy Josh Frieman Snowmass 2001.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Photometric Redshifts: Some Considerations for the CTIO Dark Energy Camera Survey Huan Lin Experimental Astrophysics Group Fermilab.
DES Collaboration Meeting – Dec. 11, Dark Energy Survey Science Proposal Josh Frieman
Weak Lensing - PSF Calibrations Steve Kent Apr 1, 2005 ● Motivation for studies: – 1. Develop concise metrics for requirements for weak lensing calibrations.
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Cosmological Weak Lensing With SKA in the Planck era Y. Mellier SKA, IAP, October 27, 2006.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
CTIO Camera Mtg - Dec ‘03 Studies of Dark Energy with Galaxy Clusters Joe Mohr Department of Astronomy Department of Physics University of Illinois.
COSMIC MAGNIFICATION the other weak lensing signal Jes Ford UBC graduate student In collaboration with: Ludovic Van Waerbeke COSMOS 2010 Jes Ford Jason.
Measuring Cosmic Shear Sarah Bridle Dept of Physics & Astronomy, UCL What is cosmic shear? Why is it hard to measure? The international competition Overview.
The Dark Energy Survey Probe origin of Cosmic Acceleration:
DEEP LENS SURVEY Long term dual hemisphere campaign
Advisors: Tom Broadhurst, Yoel Rephaeli
Some issues in cluster cosmology
Intrinsic Alignment of Galaxies and Weak Lensing Cluster Surveys Zuhui Fan Dept. of Astronomy, Peking University.
6-band Survey: ugrizy 320–1050 nm
Presentation transcript:

Gravitational Lensing See the same effects that occur in more familiar optical circumstances: magnification and distortion (shear) Gravitational lens True Position 1 Apparent Position 1 True position 2 Apparent position 2 Observer Objects farther from the line of sight are distorted less. “Looking into” the lens: extended objects are tangentially distorted... Lensing conserves surface brightness: bigger image  magnified

Gravitational Lensing by Clusters Strong Lensing

Deep images: WL reconstrution of Cluster Mass Profile

Lensing Cluster

Lensing Cluster Source

Lensing Cluster Source Image

Lensing Cluster Source Image Tangential shear

Statistical Weak Lensing by Galaxy Clusters Mean Tangential Shear Profile in Optical Richness (Ngal) Bins to 30 h-1Mpc Sheldon, Johnston, etal SDSS

Statistical Weak Lensing by Galaxy Clusters Mean Tangential Shear Profile in Optical Richness (Ngal) Bins to 30 h-1Mpc Johnston, Sheldon, etal SDSS

Mean 3D Cluster Mass Profile from Statistical NFW Lensing fit Johnston, etal NFW fit Virial mass 2-halo term

Statistical Weak Lensing Calibrates Cluster Mass vs. Observable Relation Cluster Mass vs. Number of galaxies they contain Future: use this to independently calibrate, e.g., SZE vs. Mass SDSS Data z<0.3 Statistical Lensing eliminates projection effects of individual cluster mass Estimates ~50% scatter in mass vs optical richness Johnston, Sheldon, etal

Statistical measure of shear pattern, ~1% distortion Background sources Dark matter halos Observer Cosmic Web – bottom up scenario – clusters then filaments then walls (membranes). Note that filaments not well traced by galaxies & too ephemeral to emit x-rays, so lensing only way to detect. Statistical measure of shear pattern, ~1% distortion Radial distances depend on geometry of Universe Foreground mass distribution depends on growth of structure

Gravitational Lensing A simple scattering experiment: Observer Galaxy cluster/lens Background source

Gravitational Lensing Lens equation: The deflection a is sensitive to all mass, luminous or dark. Thus, lensing probes the dark matter halos of distant galaxies and clusters.

Weak lensing: shear and mass

Reducing WL Shear Systematics Results from 75 sq. deg. WL Survey with Mosaic II and BTC on the Blanco 4-m Jarvis, etal (signal) (old systematic) Cosmic Shear (improved systematic) Red: expected signal

Lensing Tomography zl1 zl2 z1 lensing mass z2 Shear at z1 and z2 given by integral of growth function & distances over lensing mass distribution.

Weak Lensing Tomography • Shear-shear & galaxy-shear correlations probe distances & growth rate of perturbations • Galaxy correlations determine galaxy bias priors Statistical errors on shear-shear correlations: Requirements: Sky area, depth, photo-z’s, image quality & stability

Weak Lensing Tomography: DES Huterer etal Cosmic Shear Angular Power Spectrum in Photo-z Slices Shapes of ~300 million well-resolved galaxies, z = 0.7 Primary Systematics: photo-z’s, PSF anisotropy, shear calibration Extra info in bispectrum & galaxy-shear: robust Statistical errors shown DES WL forecasts conservatively assume 0.9” PSF = median delivered to existing Blanco camera: DES should do better & be more stable DES WL forecasts conservatively assume 0.9” PSF = median delivered to existing Blanco camera: DECam should do better & be more stable

Theory Uncertainty in P(k) and WL Residual of the shear convergence power spectrum relative to simulation with dark matter only WL data can be used to self-calibrate baryon impact Zentner, Rudd, Hu, Kravtsov

Weak Lensing & Photo-z Systematics (w0)/(w0|pz fixed) (wa)/(wa|pz fixed) Ma

Weak Lensing Systematics: Anisotropic PSF Focus too low Focus (roughly) correct Focus too high Whisker plots for three BTC camera exposures; ~10% ellipticity Left and right are most extreme variations, middle is more typical. Correlated variation in the different exposures: PCA analysis --> can use stars in all the images: much better PSF interpolation Jarvis and Jain

PCA Analysis: Improved Systematics Reduction Focus too low Focus (roughly) correct Focus too high Remaining ellipticities are essentially uncorrelated. Measurement error is the cause of the residual shapes. 1st improvement: higher order polynomial means PSF accurate to smaller scales 2nd: Much lower correlated residuals on all scales! Jarvis and Jain