1 Illustration of the Classification Task: Learning Algorithm Model.

Slides:



Advertisements
Similar presentations
Data Mining Classification: Basic Concepts,
Advertisements

Classification Basic Concepts Decision Trees
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Part I Introduction to Data Mining by Tan,
Math 5364 Notes Chapter 4: Classification
Bab /44 Bab 4 Classification: Basic Concepts, Decision Trees & Model Evaluation Part 1 Classification With Decision tree.
Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of the attributes is the class.
Statistics 202: Statistical Aspects of Data Mining
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Classification: Definition l Given a collection of records (training set) l Find a model.
1 Data Mining Classification Techniques: Decision Trees (BUSINESS INTELLIGENCE) Slides prepared by Elizabeth Anglo, DISCS ADMU.
Decision Tree.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification Kuliah 4 4/29/2015. Classification: Definition  Given a collection of records (training set )  Each record contains a set of attributes,
Data Mining Classification This lecture node is modified based on Lecture Notes for Chapter 4/5 of Introduction to Data Mining by Tan, Steinbach, Kumar,
Lecture Notes for Chapter 4 and towards the end from Chapter 5
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Chapter 7 – Classification and Regression Trees
Data Mining Classification: Naïve Bayes Classifier
Classification: Basic Concepts and Decision Trees.
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification: Decision Trees, and Naïve Bayes etc. March 17, 2010 Adapted from Chapters 4 and 5 of the book Introduction to Data Mining by Tan, Steinbach,
Online Algorithms – II Amrinder Arora Permalink:
Lecture Notes for Chapter 4 Introduction to Data Mining
CSci 8980: Data Mining (Fall 2002)
1 BUS 297D: Data Mining Professor David Mease Lecture 5 Agenda: 1) Go over midterm exam solutions 2) Assign HW #3 (Due Thurs 10/1) 3) Lecture over Chapter.
Lecture 5 (Classification with Decision Trees)
Example of a Decision Tree categorical continuous class Splitting Attributes Refund Yes No NO MarSt Single, Divorced Married TaxInc NO < 80K > 80K.
DATA MINING : CLASSIFICATION. Classification : Definition  Classification is a supervised learning.  Uses training sets which has correct answers (class.
1 Statistics 202: Statistical Aspects of Data Mining Professor David Mease Tuesday, Thursday 9:00-10:15 AM Terman 156 Lecture 11 = Finish ch. 4 and start.
DATA MINING LECTURE 9 Classification Basic Concepts Decision Trees.
CISC 4631 Data Mining Lecture 03: Introduction to classification Linear classifier Theses slides are based on the slides by Tan, Steinbach and Kumar (textbook.
1 Data Mining Lecture 3: Decision Trees. 2 Classification: Definition l Given a collection of records (training set ) –Each record contains a set of attributes,
Chapter 4 Classification. 2 Classification: Definition Given a collection of records (training set ) –Each record contains a set of attributes, one of.
Classification: Basic Concepts, Decision Trees, and Model Evaluation
Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes.
Classification Basic Concepts, Decision Trees, and Model Evaluation
Decision Trees and an Introduction to Classification.
Lecture 7. Outline 1. Overview of Classification and Decision Tree 2. Algorithm to build Decision Tree 3. Formula to measure information 4. Weka, data.
Machine Learning: Decision Trees Homework 4 assigned
Modul 6: Classification. 2 Classification: Definition  Given a collection of records (training set ) Each record contains a set of attributes, one of.
Review - Decision Trees
Decision Trees Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation COSC 4368.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Minqi Zhou.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Classification: Basic Concepts, Decision Trees. Classification: Definition l Given a collection of records (training set ) –Each record contains a set.
Decision Trees Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting.
Classification & Regression COSC 526 Class 7 Arvind Ramanathan Computational Science & Engineering Division Oak Ridge National Laboratory, Oak Ridge Ph:
Lecture Notes for Chapter 4 Introduction to Data Mining
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan, Steinbach,
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4.
Big Data Analysis and Mining Qinpei Zhao 赵钦佩 2015 Fall Decision Tree.
Classification: Basic Concepts, Decision Trees. Classification Learning: Definition l Given a collection of records (training set) –Each record contains.
Data Mining Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining By Tan, Steinbach,
Introduction to Data Mining Clustering & Classification Reference: Tan et al: Introduction to data mining. Some slides are adopted from Tan et al.
Data Mining – Clustering and Classification 1.  Review Questions ◦ Question 1: Clustering and Classification  Algorithm Questions ◦ Question 2: K-Means.
Data Mining Classification and Clustering Techniques Introduction to Data Mining by Tan, Steinbach, Kumar © Tan,Steinbach, Kumar Introduction to Data Mining.
Illustrating Classification Task
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification Decision Trees
EECS 647: Introduction to Database Systems
Data Mining Classification: Basic Concepts and Techniques
Lecture Notes for Chapter 4 Introduction to Data Mining
Classification Basic Concepts, Decision Trees, and Model Evaluation
Machine Learning” Notes 2
Basic Concepts and Decision Trees
آبان 96. آبان 96 Classification: Basic Concepts, Decision Trees, and Model Evaluation Lecture Notes for Chapter 4 Introduction to Data Mining by Tan,
Statistical Learning Dong Liu Dept. EEIS, USTC.
COSC 4368 Intro Supervised Learning Organization
COP5577: Principles of Data Mining Fall 2008 Lecture 4 Dr
Presentation transcript:

1 Illustration of the Classification Task: Learning Algorithm Model

2 Classification: Definition l Given a collection of records (training set) –Each record contains a set of attributes (x), with one additional attribute which is the class (y). l Find a model to predict the class as a function of the values of other attributes. l Goal: previously unseen records should be assigned a class as accurately as possible. –A test set is used to determine the accuracy of the model. Usually, the given data set is divided into training and test sets, with training set used to build the model and test set used to validate it.

3 Classification Examples l Classifying credit card transactions as legitimate or fraudulent l Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil l Categorizing news stories as finance, weather, entertainment, sports, etc l Predicting tumor cells as benign or malignant

4 An Example of a Decision Tree categorical continuous class Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Splitting Attributes Training Data Model: Decision Tree

5 Applying the Tree Model to Predict the Class for a New Observation Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data Start from the root of tree.

6 Applying the Tree Model to Predict the Class for a New Observation Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

7 Applying the Tree Model to Predict the Class for a New Observation Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

8 Applying the Tree Model to Predict the Class for a New Observation Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

9 Applying the Tree Model to Predict the Class for a New Observation Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data

10 Applying the Tree Model to Predict the Class for a New Observation Refund MarSt TaxInc YES NO YesNo Married Single, Divorced < 80K> 80K Test Data Assign Cheat to “No”

11 How to Apply Hunt’s Algorithm l Usually it is done in a “greedy” fashion. l “Greedy” means that the optimal split is chosen at each stage according to some criterion. l This may not be optimal at the end even for the same criterion. l However, the greedy approach is computational efficient so it is popular.

12 How to Apply Hunt’s Algorithm (continued) l Using the greedy approach we still have to decide 3 things: #1) What attribute test conditions to consider #2) What criterion to use to select the “best” split #3) When to stop splitting l For #1 we will consider only binary splits for both numeric and categorical predictors as discussed on the next slide l For #2 we will consider misclassification error, Gini index and entropy l #3 is a subtle business involving model selection. It is tricky because we don’t want to overfit or underfit.

13 #1) What Attribute Test Conditions to Consider l We will consider only binary splits for both numeric and categorical predictors as discussed, but your book talks about multiway splits also l Nominal l Ordinal – like nominal but don’t break order with split l Numeric – often use midpoints between numbers CarType {Sports, Luxury} {Family} Size {Medium, Large} {Small} Taxable Income > 80K? Yes No OR Size {Small, Medium} {Large}

14 #2) What criterion to use to select the “best” split l We will consider misclassification error, Gini index and entropy Misclassification Error: Gini Index: Entropy:

15 Misclassification Error l Misclassification error is usually our final metric which we want to minimize on the test set, so there is a logical argument for using it as the split criterion l It is simply the fraction of total cases misclassified l 1 - Misclassification error = “Accuracy”

16 In class exercise

17 Gini Index l This is commonly used in many algorithms like CART and the rpart() function in R l After the Gini index is computed in each node, the overall value of the Gini index is computed as the weighted average of the Gini index in each node

18 Gini Examples for a Single Node P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Gini = 1 – P(C1) 2 – P(C2) 2 = 1 – 0 – 1 = 0 P(C1) = 1/6 P(C2) = 5/6 Gini = 1 – (1/6) 2 – (5/6) 2 = P(C1) = 2/6 P(C2) = 4/6 Gini = 1 – (2/6) 2 – (4/6) 2 = 0.444

19 In class exercise

20 Misclassification Error Vs. Gini Index l The Gini index decreases from.42 to.343 while the misclassification error stays at 30%. This illustrates why we often want to use a surrogate loss function like the Gini index even if we really only care about misclassification. A? YesNo Node N1Node N2 Gini(N1) = 1 – (3/3) 2 – (0/3) 2 = 0 Gini(Children) = 3/10 * 0 + 7/10 * 0.49 = Gini(N2) = 1 – (4/7) 2 – (3/7) 2 = 0.490