Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University.

Slides:



Advertisements
Similar presentations
Experiment E (e,e'p) Studies of the Deuteron at High Q 2 P.E. Ulmer Old Dominion University Spokespersons: W. Boeglin, M. Jones, A. Klein, P. Ulmer.
Advertisements

NDVCS measurement with BoNuS RTPC M. Osipenko December 2, 2009, CLAS12 Central Detector Collaboration meeting.
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
A precise extraction of the induced polarization in 4 He(e,e’p) 3 H from E Simona Malace University of South Carolina Outline.
Onset of Scaling in Exclusive Processes Marco Mirazita Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati First Workshop on Quark-Hadron.
Disentangling the EMC effect ? Eli Piasetzky Tel Aviv University, Israel The EMC effect is 30 years old.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Degree of polarization of  produced in quasielastic charge current neutrino-nucleus scattering Krzysztof M. Graczyk Jaroslaw Nowak Institute of Theoretical.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Hypernuclear Production in proton- and pion- nucleus Collisions: A Fully Relativistic Description Radhey Shyam Saha Institute of Nuclear Physics, Kolkata,
DNP Long Range Plan January Nuclei at Short Distance Scale Ronald Ransome Rutgers, The State University of New Jersey Piscataway, NJ.
The Size and Shape of the Deuteron The deuteron is not a spherical nucleus. In the standard proton-neutron picture of this simplest nucleus, its shape.
Eli Piasetzky Tel Aviv University, ISRAEL Short Range Correlations and the EMC Effect Work done in collaboration with: L. B. Weinstein (ODU) D. Higinbotham,
Charge-Changing Neutrino Scattering from the Deuteron J. W. Van Orden ODU/Jlab Collaborators: T. W. Donnelly and Oscar Morino MIT W. P. Ford University.
African Summer School 2012 Connecting the SRC & EMC Effects by.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
The Impact of Special Relativity in Nuclear Physics: It’s not just E = Mc 2.
Does a nucleon appears different when inside a nucleus ? Patricia Solvignon Argonne National Laboratory Postdoctoral Research Symposium September 11-12,
Lecture 11: Quarks inside the proton 9/10/ Idea: try to identify a kinematic regime in which the electrons scatter from pointlike constituents.
Interpretation of recent JLab results on quasi elastic (e,e ’ p) reactions off few- nucleon systems INPC2007, Tokyo, 6 June, 2007 H. Morita, Sapporo Gakuin.
Photodisintegration of Few-Body Nuclei Ron Gilman Rutgers / Jefferson Lab What have we learned? What might we learn? Jefferson Lab User Group The Next.
Deeply Virtual Exclusive Reactions with CLAS Valery Kubarovsky Jefferson Lab ICHEP July 22, 2010, Paris, France.
 4 He(e,e'p)X, April 13 and April 14, 2011, 16 hours Measured P miss at to 1.0 GeV/c, x b = 1.24, Q 2 = 2 (GeV/c) 2 Extension of SRC 2 body data.
1 Nuclear Physics and Electron Scattering. 2 Four forces in nature –Gravity –Electromagnetic –Weak –Strong  Responsible for binding protons and neutrons.
Lecture 16: Beta Decay Spectrum 29/10/2003 (and related processes...) Goals: understand the shape of the energy spectrum total decay rate sheds.
Simona Malace, Hall A Collaboration Meeting – June 12-14, 2008, Jefferson Lab, Newport News, VA E03-104: Experiment Status Report Michael Paolone (GS),
HALL A COLLABORATION MEETING 16 DECEMBER 2009 STATUS OF THE E EXPERIMENT Impulse Approximation limitations to the (e,e’p) reaction on 208 Pb, 209.
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Precision Measurement of R L and R T of Quasi-Elastic Electron Scattering In the Momentum Transfer Range 0.55GeV/c≤|q|≤1.0GeV/c* Yan Xinhu Department of.
Detailed Study of the 4 He Nuclei through Response Function Separations at High Momentum Transfers Spokespersons Fatiha Benmokhtar Carnegie Mellon, Pittsburgh,
“E at Hall A Collaboration” Tai Muangma E :Status Report Nucleon-Nucleon Short-Range Correlation (NN-SRC) on He 4 target Hall A Collaboration.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
EINN 2005, Milos, GreeceShalev Gilad - MIT Nuclear Structure and Dynamics in the 3 He(e,e’p)d and 3 He(e,e’p)pn Reactions Two high resolution spectrometers.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Few Body-18Santos, Brazil August 25, Meson Exchange Currents in Pion Double Charge Exchange Reaction Roman Ya. Kezerashvili NY City College of Technology.
E. Penel-NottarisLaboratoire de Physique Subatomique et de Cosmologie de Grenoble 1 July, 7 th, 2004 Quasi-elastic 3 He(e,e’p) experiment (E89-044) at.
EMC effect in few-body nuclei at large x Patricia Solvignon Argonne National Laboratory Elba X Workshop Electron-Nucleus Scattering X June 23-27, 2008.
Nucleon Form Factors and the BLAST Experiment at MIT-Bates
1 On extraction of the total photoabsorption cross section on the neutron from data on the deuteron  Motivation: GRAAL experiment (proton, deuteron) 
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
EEP03: International Workshop on Probing Nucleons and Nuclei via the (e,e'p) Reaction October 14-17, 2003 Grenoble, France Overview of the (e,e'p) Reaction.
Model independent extraction of neutron structure functions from deuterium data. Svyatoslav Tkachenko University of South Carolina.
Thomas Jefferson National Accelerator Facility PAC-25, January 17, 2004, 1 Baldin Sum Rule Hall C: E Q 2 -evolution of GDH integral Hall A: E94-010,
CEBAF - Continuous Electron Beam Accelerator Facility.
L. Weinstein, Gordon The Nucleons Went Two By Two: Short Range Correlations in Nuclei Larry Weinstein Old Dominion University Theory Overview What.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
L/T separation in the 3 He(e,e’p) reaction at parallel kinematics Freija Descamps Supervisors: Ron Gilman Eric Voutier Co-supervisor: Jean Mougey.
Crystal Ball Collaboration Meeting, Basel, October 2006 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
New Measurement of the EMC effect for Light Nuclei and Global Study of the A-Dependence Patricia Solvignon Argonne National Laboratory ECT 2008 Workshop.
Spectrometer optics studies and target development for the 208Pb(e,e’p) experiment in Hall A at Jefferson Lab, GUIDO M. URCIUOLI, INFN, Roma, Italy, JUAN.
Lecture 2 - Feynman Diagrams & Experimental Measurements
Search for direct evidence of tensor interaction in nuclei = high momentum component in nuclei = TERASHIMA Satoru 寺嶋 知 Depart. of Nuclear Science and Technology,
Envisioned PbWO4 detector Wide-Angle Compton Scattering at JLab-12 GeV with a neutral-particle detector With much input from B. Wojtsekhowski and P. Kroll.
FSU, Tallahassee FL USA May 2016 Eli Piasetzky Tel Aviv University, ISRAEL 12 C Measurement of polarization transferred to a proton bound in nuclei MAMI.
Bryan Moffit Hall A Collaboration Meeting Studying Short Range Correlations in Nuclei at the Repulsive Core Limit via the Triple Coincidence (e,e’pN) Reaction.
PV Electron Scattering
Short Range NN Correlations (from Inclusive Cross Sections)
Covariant Formulation of the Deuteron
The Size and Shape of the Deuteron
Elastic Scattering in Electromagnetism
Carlotta Giusti University and INFN Pavia
Flavor dependence of the EMC effect
Nadia Fomin University of Virginia
presented by Werner Boeglin Florida International University Miami
Scaling Study of the L-T Separated p(e,e’π+)n Cross Section at Large Q2 Tanja Horn Jefferson Lab APS/DNP meeting 2007 DNP07 October 2007.
for the A1 collaboration
Life Cycle of a Nuclear Physics Experiment
Presentation transcript:

Hampton University Graduate Studies 2003 (e,e'p) and Nuclear Structure Paul Ulmer Old Dominion University

Thanks to: W. Boeglin T.W. Donnelly (Nuclear physics course at MIT) J. Gilfoyle R. Gilman R. Niyazov J. Kelly (Adv. Nucl. Phys. 23, 75 (1996)) B. Reitz A.Saha S. Strauch E. Voutier L. Weinstein

Outline  Introduction  Background  Experimental  Theoretical  Nuclear Structure  Medium-modified nucleons  Cross sections  Polarization transfer  Studies of the reaction mechanism  Few-body nuclei  The deuteron  3,4 He

A(e,e'p)B Known: e and A Detect: e' and p e e'e' q A p B Infer: p m = q – p = p B

e'e' e vv A B + p (e,e'p) - Schematically B = A–1 A–2 + N Etc. i.e. bound

Kinematics e e'e' xx pA–1pA–1  pq p (,q)(,q) In ERL e : Q 2  – q  q  = q 2 –  2 = 4ee' sin 2  /2 Missing momentum: p m = q – p = p A–1 Missing mass:  m =  –T p – T A–1 scattering plane “out-of-plane” angle reaction plane

Some (Very Few) Experimental Details …

“accidental” (uncorrelated) e e e e'e' e'e' p e'e' p “real” (correlated) Detected

# events relative time: t e – t p rr aa

Accidentals Rate = R e  R p   /DF  I 2  /DF Reals Rate = R eep  I S:N = Reals/Accidentals  DF /(  I) Compromise: Optimize S:N and R eep

Extracting the cross section NeNe e e'e'N N (cm -2 ) (  e,  p e ) (  p,  p p ) p

Some Theory …

Cross Section for A(e,e'p)B in OPEA where Current-Current Interaction “A-1”

Square of Matrix Element  WW

Electron tensor Nuclear tensor Mott cross section Cross Section in terms of Tensors

3 indep. momenta: Q, P i, P (P A–1 = Q + P i – P) target nucleus ejectile 6 indep. scalars: P i 2, P 2, Q 2, QP i,QP, PP i = M A 2 = m 2 Consider Unpolarized Case Lorentz Vectors/Scalars

Nuclear Response Tensor X i are the response functions

Impose Current Conservation Get 6 equations in 10 unknowns 4 independent response functions

Putting it all together …

The Response Functions Use spherical basis with z-axis along q: Nuclear 4-current

Q P i =  M A P P i = E M A Q P =  E – q p cos  pq In lab: Can choose: Q 2, ,  m, p m Note: no  x dependence in response functions Response functions depend on scalar quantities

Including electron and recoil proton polarizations

Extracting Response Functions For instance: R LT and A  (=A LT )

Plane Wave Impulse Approximation (PWIA) e e'e' q p p0p0 A A–1 A-1 spectator p0p0 q – p = p A-1 = p m = – p 0

nuclear spectral function In nonrelativistic PWIA: For bound state of recoil system: proton momentum distribution The Spectral Function e-p cross section

The Spectral Function, cont’d. Note: S is not an observable!

Elastic Scattering from a Proton at Rest p (,q)(,q) (m,0)(m,0) p (  +m, q) Proton is on-shell  (  + m) 2  q 2 = m 2  2 + 2m  + m 2  q 2 = m 2  = Q 2  2m Before After

Scattering from a Proton, cont’d. Vertex fcn ++ ++ n p p p p p p 00 p p point proton structure/anomalous moment +++

Scattering from a Proton, cont’d. Dirac FFPauli FF Sachs FF’s Vertex fcn: G E and G M are the Fourier transforms of the charge and magnetization densities in the Breit frame.

r k k'k' Amplitude at q: Phase difference: Form Factor

Cross section for ep elastic However, (e,e'p) on a nucleus involves scattering from moving protons, i.e. Fermi motion.

Elastic Scattering from a Moving Proton p (,q)(,q) (E,p)(E,p) (  + E) 2 – (q+p) 2 = m 2  2 + 2E  + E 2  q 2  2pq  p 2 = m 2 Q 2 = 2E   2pq  (E/m) = (Q 2  2m) + pq  m Before p (  +E, q+p) After

Cross section for ep elastic scattering off moving protons Follow same procedure as for unpolarized (e,e'p) from nucleus We get same form for cross section, with 4 response functions …

Response functions for ep elastic scattering off moving protons

Quasielastic Scattering For E  m:   (Q 2  2m) + pq  m Expect peak at:   (Q 2  2m) Broadened by Fermi motion: pq  m If we “quasielastically” scatter from nucleons within nucleus:

 Elastic Quasielastic  N*N* Deep Inelastic Nucleus  Elastic  N*N* Deep Inelastic Proton Electron Scattering at Fixed Q 2

6 Li 181 Ta 89 Y 58 Ni 40 Ca 24 Mg 12 C 118 Sn 208 Pb R.R. Whitney et al., Phys. Rev. C 9, 2230 (1974). Quasielastic Electron Scattering

Data: P. Barreau et al., Nucl. Phys. A402, 515 (1983). y-scaling analysis: J.M. Finn, R.W. Lourie and B.H. Cottman, Phys. Rev. C 29, 2230 (1984).

Nuclear Structure

U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341 (1964). First, a bit of history: The first (e,e'p) measurement Frascati Synchrotron, Italy 12 C(e,e'p) 27 Al(e,e'p)

(e,e'p) advantages over (p,2p) Electron interaction relatively weak: OPEA is reasonably accurate. Nucleus is very transparent to electrons: Can probe deeply bound orbits. However: ejected proton is strongly interacting. The “cleanness” of the electron probe is somewhat sacrificed. FSI must be taken into account.

Recall, in nonrelativistic PWIA: where q – p = p m = – p 0 FSI destroys simple connection between the measured p m and the proton initial momentum (not an observable).

e e'e' q p p0p0 FSI A–1A–1 A p0'p0' Final State Interactions (FSI)

Treat outgoing proton distorted waves in presence of potential produced by residual nucleus (optical potential). Distorted Wave Impulse Approximation (DWIA) “Distorted” spectral function

Optical potential is constrained by proton elastic scattering data. Problems with this approach: Residual nucleus contains hole state, unlike the target in p+A scattering. Proton scattering data is surface dominated, whereas ejected protons in (e,e'p) are produced within entire nuclear volume.

J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). 100 MeV data is significantly overestimated by DWIA near 2 nd maximum. NIKHEF-K Amsterdam

J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). At p m  160 MeV/c, wf is probed in nuclear interior.

J.W.A. den Herder, et al., Phys. Lett. B 184, 11 (1987). Adjusting optical potential renders good agreement while maintaining agreement with p+A elastic.

J. Mougey et al., Nucl. Phys. A262, 461 (1976). Saclay Linac, France 12 C(e,e'p) 11 B

J. Mougey et al., Nucl. Phys. A262, 461 (1976). Saclay Linac, France 12 C(e,e'p) 11 B p-shell l=1 s-shell l=0

G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B

G. van der Steenhoven et al., Nucl. Phys. A484, 445 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B

G. van der Steenhoven, et al., Nucl. Phys. A480, 547 (1988). NIKHEF-K Amsterdam 12 C(e,e'p) 11 B DWIA calculations fit data reasonably well. Missing strength observed however.

L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). 12 C(e,e'p) Bates Linear Accelerator

K.I. Blomqvist et al., Phys. Lett. B 344, 85 (1995). MAMI Mainz, Germany

K.I. Blomqvist et al., Phys. Lett. B 344, 85 (1995). MAMI Mainz, Germany Factorization violated. DWIA calculations underpredict at high p m. Neglected MEC’s & relativistic effects. Offshell effects uncertain at high p m.

I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994). AmPS NIKHEF-K Amsterdam 208 Pb(e,e'p)

I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994). 208 Pb(e,e'p) AmPS NIKHEF-K Amsterdam Long-range correlations important. SRC and TC less so, but expected to grow with  m.

Some of the lessons learned: (e,e'p) sensitive probe of single-particle orbits. Proton distortions (FSI) must be accounted for to reproduce shape of spectral function. Energy dependence of FSI breaks factorization. Missing strength in valence orbits, even after accounting for FSI At high P m significant discrepancies found relative to calculations.

Where does the “missing” strength go? One possibility: Detected recoils populates high  m

C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984). n(k) total  m  MeV 2-body  m  300 MeV  m  50 MeV 3 He SRC dominate high k (=p m ) and are related to large values of  m.

C. Ciofi degli Atti, E. Pace and G. Salmè, Phys. Lett. 141B, 14 (1984). d Nucl. Matter 3 He 4 He Similar shapes for few-body nuclei and nuclear matter at high k (=p m ).

Medium-Modified Nucleons

Searching for Medium Effects on the Nucleon … In parallel kinematics: Can write ep elastic cross section as:

PWIA Relate R T /R L to in-medium proton FF’s This relies on (unrealistic) model assumptions! Nonetheless …

J.E. Ducret et al., Phys. Rev. C 49, 1783 (1994). 2 H(e,e'p)n 6 Li(e,e'p) DWIA NIKHEF-K Amsterdam J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990).

12 C(e,e'p) and 12 C(e,e')

D. Dutta et al., Phys. Rev. C 61, (2000). JLab Hall C

However, large FSI effects can mimic this behavior …

Dirac PWIA Dirac DWIA Schrödinger LDA FSI calculations for 16 O 1p 3/2 Data for 12 C 1p 3/2

Another, less model-dependent, method … Polarization Transfer

Proton Polarization and Form Factors * R. Arnold, C. Carlson and F. Gross, Phys. Rev. C 23, 363 (1981). in nucleus model assumptions *

spectrometer + FPP 1 H and ( 2 H or 4 He) spectrometer Polarization Transfer in Hall A

Measuring the Proton Polarization: FPP

Density Dependent Form Factors For (e,e'p) D.H. Lu,, A.W. Thomas, K. Tsushima, A.G. Williams, K. Saito, Phys. Lett. B 417, 217 (1998). Quark-Meson Coupling Model (QMC):

D.H. Lu, K. Tsushima, A.W. Thomas, A.G. Williams and K. Saito, Phys. Lett. B417, 217 (1998) and Phys. Rev. C 60, (1999). Quark-Meson Coupling Model 4 He

Calculations by Arenhövel JLab RDWIA calculations by Udias et al. Preliminary

Induced Polarization – 4 He JLab E P y =0 in PWIA: test of FSI Preliminary

PWIADWIA DWIA+spinor distortion DWIA+QMC S. Malov et al., Phys. Rev. C 62, (2000).

Studies of the Reaction Mechanism

 Correlations MEC’s IC’s Correlations and Interaction Currents

Off-shell Effects Vertex function is not well defined. The “Gordon identity” leads to alternative forms, equivalent only when proton is on-shell. e e'e' q p p0p0 A A–1 initial proton is bound

D. Dutta et al., Phys. Rev. C 61, (2000).P.E. Ulmer et al., Phys. Rev. Lett. 59, 2259 (1987). 12 C(e,e'p) L/T Separations Q 2 =0.15 GeV 2 Q 2 =0.64 GeV 2 Bates Linear AcceleratorJLab Hall C

D. Dutta et al., Phys. Rev. C 61, (2000). Excess transverse strength at high  m. Persists, though perhaps declines, at higher Q 2. JLab Hall C

J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990). 6 Li(e,e'p) T/L Ratio DWIA (dashed) fails to describe overall strength. Scaling transverse amplitude in DWIA (solid) gives good agreement  deduce scale factor, . NIKHEF-K Amsterdam

J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250 (1990). DWIA 6 Li(e,e'p) T/L Ratio NIKHEF-K Amsterdam

The L/T separations suggest Additional transverse reaction mechanism above 2-nucleon emission threshold. MEC’s primarily transverse in character. Suggestive of two-body current. Reminiscent of …

J.M. Finn, R.W. Lourie and B.H. Cottman, Phys. Rev. C 29, 2230 (1984). T/L anomaly in inclusive (e,e'):

R.W. Lourie et al., Phys. Rev. Lett. 56, 2364 (1986). 12 C(e,e'p) in “Dip Region” Data from: Bates Linear Accelerator Bates Linear Accelerator

L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646 (1990). H. Baghaei et al., Phys. Rev. C 39, 177 (1989). 12 C(e,e'p) Quasielastic“Delta” Q 2 =0.30 Q 2 =0.48 Q 2 =0.58 Between dip and  Peak of  Bates Linear Accelerator

Figure adapted from J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). Missing Energy (MeV) C(e,e'p) q=990 MeV/c,  =475 MeV For 60<  m <100 MeV, continuum cross section increases strongly with . Large continuum strength continues up to 300 MeV. Bates Linear Accelerator

Figure adapted from J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). Missing Energy (MeV) C(e,e'p) q=970 MeV/c,  =330 MeV Continuum strength increases strongly with . Continuum cross section is smaller at high  m. Bates Linear Accelerator

J.H. Morrison et al., Phys. Rev. C 59, 221 (1999). 12 C(e,e'p) For  <  QE, spectroscopic factors consistent with naïve expectations. Bates Linear Accelerator

C.M. Spaltro et al., Phys. Rev. C 48, 2385 (1993). Circles (solid) – NIKHEF-KCrosses (dashed) - Saclay Large discrepancy for 1p 3/2. Relativistic effects predicted to be small here. Two-body currents responsible?? 16 O(e,e'p)

J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000). 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Relativistic DWIA gives good agreement with data. JLab Hall A

N. Liyanage et al., Phys. Rev. Lett. 86, 5670 (2001). Two-body calculations of Ryckebusch et al., give flat distribution, as seen in the data, but underpredict by a factor of two. 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic JLab Hall A

At high energies, R LT interference response function sensitive to relativistic effects. For example, spinor distortion …

Spinor Distortions N.R. reduction S+V  Mean field S+V relatively small Dirac spinor S–V affects lower components S–V large

J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000). 16 O(e,e'p) Q 2 =0.8 GeV 2 Quasielastic Udias full Udias BS SD only Udias scatt. state SD only Udias - no SD Kelly 1p 1/2 1p 3/2 Sensitive to “spinor distortions” JLab Hall A

Few-body Nuclei …

The Deuteron

Short-distance Structure Low p m p n High p m p n For large overlap, nucleons may lose individual identities: Quark/gluon d.o.f.?

M. Bernheim et al., Nucl. Phys. A365, 349 (1981). Saclay Linac, France

P.E. Ulmer et al., Phys. Rev. Lett. 89, (2002). p m (MeV/c) Arenhövel DWBA Arenhövel Full PWBA Jeschonnek or Arenhövel JLab Hall A Large FSI/non- nucleonic effects. Problem at p m =0.

D. Jordan et al., Phys. Rev. Lett. 76, 1579 (1996).

K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). MAMI Mainz, Germany Ducret et al. Bernheim et al. Jordan et al. Blomqvist et al. data cover kinematics beyond . Also neutron exchange diagram important.

K.I. Blomqvist et al., Phys. Lett. B 424, 33 (1998). Calculations: H. Arenhövel FSI FSI+MEC+IC

Bonn Electron Synchrotron, Germany 2 H(e,e'p) Q 2 =0.23 GeV 2 near  Calculations: Leidemann and Arenhövel H. Breuker et al., Nucl. Phys. A455, 641 (1986). PWBA+FSI PWBA+FSI+MEC+IC PWBA+FSI+MEC  clearly important

q p n f Final State n f p Proton hit (high p m ) q n p Final State n f p f Neutron hit (low p m ) e q f p n f n p Proton spectator

p m (MeV/c) P.E. Ulmer et al., Phys. Rev. Lett. 89, (2002). Q 2 =0.67 GeV 2 Quasielastic Large FSI effects. Also, substantial non-nucleonic effects. JLab Hall A

Final State Interactions Can be LARGE p q f p'p' f p p'p' actual inferred

G. van der Steenhoven, Few-Body Syst. 17, 79 (1994). Wilbois/Arenhövel de Forest Hummel/Tjon Arenhövel/Fabian Mosconi/Ricci NR

What do all these data and curves suggest? Relativistic effects substantial in A  (and R LT ). de Forest “CC1” nucleon cross section gives same qualitative features as more complete calculations  here, relativity more related to nucleonic current, as opposed to deuteron structure.

I. Passchier et al., Phys. Rev. Lett. 88, (2002). D-state important AmPS NIKHEF-K Amsterdam

Lots more d(e,e'p) data on the way!

Perpendicular: R LT Q 2 : 0.80, 2.10, 3.50 (GeV/c) 2 x=1: p m from 0 to  0.5 GeV/c Parallel/Anti-parallel Q 2 : 2.10 (GeV/c) 2 vary x: p m from 0 to 0.5 GeV/c Neutron angular distribution Q 2 : 0.80, 2.10, 3.50 (GeV/c) 2 2 H(e,e'p)n E Hall A

2 H(e,e'p)n with JLab 12 GeV upgrade

Preliminary Hall B E5 Data – 2 H(e,e'p) Hall B data covers large range of Q 2 and excitation as well as  coverage to separate R LT, R LT ' and R TT.

3,4 He

C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p) Calculations by Laget: dashed=PWIA dot-dashed=DWIA solid=DWIA+MEC Saclay Linear Accelerator Arrows indicate expected position for correlated pair.

C. Marchand et al., Phys. Rev. Lett. 60, 1703 (1988). 3 He(e,e'p)d 3 He(e,e'p)np 3BBU similar to d  np

JLab Hall A Large effects from FSI and non-nucleonic currents. Highest p m shows excess strength.

A LT JLab Hall A General features reproduced but not at correct values of p m.

The most direct way to look for correlated nucleons? Detect both of them  JLab Hall B

3 He(e,e'pp)n Hall B 2 GeV P N >250 MeV/c 4 GeV P N >250 MeV/c fast pn leading p PRELIMINARY T p2 /  T p2 /  T p1 /  T p1 /  cos(2 fast nucleon angle) cos(2 fast nucleon angle)

Hall B 3 He(e,e'pp)n 2 GeV p perp < 300 MeV/c PRELIMINARY cos(  nq ) cos(  pq ) Isotropic fast pairs  pair not involved in reaction.

Hall B 3 He(e,e'pp)n Pair momentum along q [GeV/c] Small momentum along q  pair not involved in reaction. Little Q 2 or isospin dependence. p perp < 300 MeV/c PRELIMINARY 2 GeV has acceptance corrections

Before p n p After n p p Direct evidence of NN correlations

A. Magnon et al., Phys. Lett. B 222, 352 (1989). Saclay 4 He(e,e'p) 3 H Argonne+Mod 7 Urbana+Mod 7 Data and calculations “corrected” for MEC+IC (Laget). Longitudinal overpredicted. p m =90 MeV/c

J.E. Ducret et al., Nucl. Phys. A556, 373 (1993). Saclay 4 He(e,e'p) 3 H Calculations predict q dependence.

J.E. Ducret et al., Nucl. Phys. A556, 373 (1993). 4 He(e,e'p) 3 H Again, calculations predict q dependence.

J.J. van Leeuwe et al., Phys. Rev. Lett. 80, 2543 (1998). PWIA tree+one-loop tree PWIA +FSI +2-body PWIA +FSI +MEC/2B +MEC/3B Laget Schiavilla Nagorny Minimum filled in by FSI and 2&3-body currents. 4 He(e,e'p) 3 H AmPS NIKHEF-K Amsterdam

FSI: dependence on kinematics p q f p'p' f p p'p' actual inferred Large FSI q p f p p'p' f p'p' Small FSI

4 He(e,e'p) 3 H JLab Hall A Experiment E97-111, J. Mitchell, B. Reitz, J. Templon, cospokesmen It looks like the minimum is filled in here as well.

Summary (e,e'p) sensitive to single-particle aspects of nucleus, but … More complicated physics is clearly important. Spectroscopic factors reduced compared to naïve shell model (including FSI corrections). Missing strength at least partly due to interaction currents: direct interaction with with exchanged mesons or interaction with correlated pairs (spreads strength over  m ).

Summary cont’d. After several decades of experimental and theoretical effort, there are still unanswered questions. What is the nature of the interaction of the virtual photon with the “nucleon”: medium and offshell effects? Handling FSI and other reaction currents still problematic, though realistic calculations are now available for the lighter systems. High energy program is underway, pushing to shorter distance scales, emphasizing relativistic effects, …