Units of Measure & Conversions. Number vs. Quantity  Quantity - number + unit UNITS MATTER!!

Slides:



Advertisements
Similar presentations
Chapter 2 – Scientific Measurement
Advertisements

I II III III. Unit Conversions (p ) CH MEASUREMENT.
Measurement I. Units of Measurement  Number vs. Quantity  SI Base Units & Prefixes  Derived Units  Density Calculations.
I II III Unit Conversions MEASUREMENT. A. SI Prefix Conversions 1.Find the difference between the exponents of the two prefixes. 2.Move the decimal that.
I. Scientific Method. The Scientific Method A logical approach to solving problems or answering questions. Starts with observation- noting and recording.
Chapter 2: Measurement and Calculations… Section 2-1: Scientific Method (pg29-31) will not be explicitly covered but used throughout this entire class…
Scientific Notation Converting into Sci. Notation: –Move decimal until there’s 1 digit to its left. Places moved = exponent. –Large # (>1)  positive.
I II III I. Using Measurements CH. 2 - MEASUREMENT.
Unit 2. Measurement This lesson is 8 days long.
C. What are Significant Figures The places in the numbers that are important. They tell you how precise a measurement is. The places in the numbers that.
I II III I. Using Measurements CH. 2 - MEASUREMENT.
Section 2-2 Units of Measurement
Homework: Due Friday 9/4 Do 1-10 on a separate sheet of paper, include units. Do all problems on slide 25 as well.
I. Using Measurements (p )
Chapter 2: Measurement and Calculations… Section 2-1: Scientific Method (pg29-31) will not be explicitly covered but used throughout this entire class…
I II III III. Unit Conversions CH. 2 - MEASUREMENT.
Scientific Notation Converting into Sci. Notation: Converting into Sci. Notation:  Move decimal until there’s 1 digit to its left. Places moved = exponent.
I II III C. Johannesson III. Unit Conversions CH. 2 - MEASUREMENT.
Measuring. What are Significant Figures Any digit of a number that is known with certainty. They tell you how precise a measurement is. Any digit of a.
I II III Units of Measurement Scientific Measurement.
Unit 2. Measurement. Do Now  In your own words, what do you think is the difference between:  Accuracy and Precision?
I II III I. Using Measurements CH. 2 - MEASUREMENT.
CH. 1 - MEASUREMENT I. Units of Measurement. Scientific Method.
I. Using Measurements MEASUREMENT IN SCIENCE. A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close.
Ch. 3, Scientific Measurement. Measurement Measurement: A quantity that has a number and a unit. Like 52 meters.
I II III I. Using Measurements MEASUREMENT. A. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how.
Ch. 3, Scientific Measurement. Measurement : A quantity that has a and a. Like 52 meters.
I. Using Measurements (p )
I II III I. Using Measurements (p. 8-15) CH MEASUREMENT.
Uncertainty in measurement  Every measurement has error associated with it.  The more precise the measurement the less error.  Error in a measurement.
I II III III. Also called the Factor-Label Method for solving problems Dimensional Analysis.
Chapter 2 - Section 3 Suggested Reading Pages Using Scientific Measurements.
I II III I. Using Measurements MEASUREMENT. A. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how.
III. Unit Conversions SI Prefix Conversions Dimensional Analysis
I II III Using Measurements MEASUREMENT. Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how close.
Follow along in your text Chapter 1 Section 2 Pages Units of Measure & Conversions.
Scientific Notation and Significant Figures A. Accuracy vs. Precision Accuracy - how close a measurement is to the accepted value Precision - how close.
I II III III. Using Measurements (p ) CH. 2 - MEASUREMENT.
What are we doing today Overview of chapter Time to work on review in groups Jeopardy Accuracy and Precision Video.
Measurements and Calculations Scientific Method Units of Measurement Using Scientific Measurements.
CH. 2 - MEASUREMENT. Observing and Collecting Data Data may be Qualitative (descriptive) Flower is red Quantitative (numerical) 100 flowers.
WHAT WE HAVE LEARNED. SCIENTIFIC NOTATION 1. Move the decimal to the right of the first non-zero number. 2. Count how many places the decimal had to.
I. Using Measurements (p )
Course Outline Math Review Measurement Using Measurements.
Measurement I. Units of Measurement  Number vs. Quantity  SI Base Units & Prefixes  Derived Units  Density Calculations.
Unit 2. Measurement. Do Now  In your own words, what do you think is the difference between:  Accuracy and Precision?
Data Analysis. Scientific Method Not covered in class: Review.
Measurements and Calculations Scientific Method Units of Measurement Using Scientific Measurements.
I. Using Measurements (p )
III. Using Measurements (p )
Measurement.
CH. 2 - MEASUREMENT I. Using Measurements.
CH. 1 - MEASUREMENT I. Units of Measurement.
Measurement Accuracy vs Precision Percent Error Significant Figures
I. Using Measurements (p )
Measurement Accuracy vs Precision SI Units Dimensional Analysis
CH. 2 - MEASUREMENT.
-Accuracy & Precision - Significant Digits -Scientific Notation
MEASUREMENT I. Units of Measurement.
Dimensional Analysis.
Dimensional Analysis, Significant Figures, & the Metric System
Measurement – The Metric System
I. Using Measurements (p )
Section 2-3 Using Measurements
CH. 2 - MEASUREMENT I. Using Measurements.
MEASUREMENT Using Measurements C. Johannesson.
CH. 1- MEASUREMENT II. Using Measurements.
CH. 2 - MEASUREMENT I. Using Measurements.
I. Using Measurements (p )
I. Using Measurements (pp )
Presentation transcript:

Units of Measure & Conversions

Number vs. Quantity  Quantity - number + unit UNITS MATTER!!

SI Units QuantityBase UnitAbbrev. Length Mass Time Temp meter kilogram second kelvin m kg s K Amountmolemol Symbol l m t T n

SI Units mega-M10 6 deci-d10 -1 centi-c10 -2 milli-m10 -3 PrefixSymbolFactor kilo-k10 3 BASE UNIT

SI Prefix Conversions 1.Find the difference between the exponents of the two prefixes. 2.Move the decimal that many places. To the left or right?

= SI Prefix Conversions NUMBER UNIT NUMBER UNIT 532 m = _______ km 0.532

SI Prefix Conversions mega-M10 6 deci-d10 -1 centi-c10 -2 milli-m10 -3 PrefixSymbolFactor micro-  nano-n10 -9 pico-p kilo-k10 3 move left move right BASE UNIT

SI Prefix Conversions 1) 20 cm = ______________ m 2) L = ______________ mL 3) 45  m = ______________ nm 4) 805 dm = ______________ km ,000 32

Dimensional Analysis  The “Factor-Label” Method  Units, or “labels” are canceled, or “factored” out

Dimensional Analysis  Steps: 1. Identify starting & ending units. 2. Line up conversion factors so units cancel. 3. Multiply all top numbers & divide by each bottom number. 4. Check units & answer.

Dimensional Analysis 5) Your European hairdresser wants to cut your hair 8.0 cm shorter. How many inches will he be cutting off? 8.0 cm1 in 2.54 cm = 3.2 in cmin

Dimensional Analysis 6) Lake Taylor football needs 550 cm for a 1 st down. How many yards is this? 550 cm 1 in 2.54 cm = 6.0 yd cmyd 1 ft 12 in 1 yd 3 ft

Dimensional Analysis 7) A piece of wire is 1.3 m long. How many 1.5-cm pieces can be cut from this wire? 1.3 m 100 cm 1 m = 86 pieces cmpieces 1 piece 1.5 cm

Warm-Up: Density  What is the density of an object that has a mass of 8.76 g and a volume of 3.07 cm3?  Find the density of a granite if a rectangular piece, 5.00 cm by 10.0 cm by 23.0 cm, has a mass of 3220 g.  Iron has a density of 7.9 g/mL. What volume would 10.0 g of iron occupy?  Determine the density of an object that has a mass of 50.50g and when placed in a graduated cylinder containing 50.0 mL of water causes the new volume to be 63.2 mL.

 In your book read section 1.3 p22-26  Make notes on the different types of graphs and when we use them  Do practice problem #1-3 on p24

Scientific Notation  Converting into Scientific Notation:  Move decimal until there’s 1 digit to its left. Places moved = exponent.  Large # (>1)  positive exponent Small # (<1)  negative exponent  Only include sig figs. 65,000 kg  6.5 × 10 4 kg

Scientific Notation 7. 2,400,000  g kg 9.7  km  10 4 mm Practice Problems 2.4  10 6  g 2.56  kg km 62,000 mm

Scientific Notation  Calculating with Scientific Notation (5.44 × 10 7 g) ÷ (8.1 × 10 4 mol) = nd EE ÷ ÷ 2nd EE ENTER = = 670 g/mol= 6.7 × 10 2 g/mol Type on your calculator:

Accuracy vs. Precision  Accuracy - how close a measurement is to the accepted value  Precision - how close a series of measurements are to each other ACCURATE = CORRECT PRECISE = CONSISTENT

Percent Error  Indicates accuracy of a measurement your value / actual accepted value / theoretical

Percent Error  A student determines the density of a substance to be 1.40 g/mL. Find the % error if the accepted value of the density is 1.36 g/mL. % error = 2.9 %

Proportions  Direct Proportion  Inverse Proportion y x y x

Derived Units  Combination of base units.  Volume (m 3 or cm 3 )  length  length  length D = MVMV 1 cm 3 = 1 mL 1 dm 3 = 1 L  Density (kg/m 3 or g/cm 3 )  mass per volume

Density Mass (g) Volume (cm 3 )

Density  An object has a volume of 825 cm 3 and a density of 13.6 g/cm 3. Find its mass. GIVEN: V = 825 cm 3 D = 13.6 g/cm 3 M = ? WORK : M = DV M = (13.6 g/cm 3 )(825cm 3 ) M = 11,200 g

Density  A liquid has a density of 0.87 g/mL. What volume is occupied by 25 g of the liquid? GIVEN: D = 0.87 g/mL V = ? M = 25 g WORK : V = M D V = 25 g 0.87 g/mL V = 29 mL

Significant Figures  Indicate precision of a measurement.  Recording Sig Figs  Sig figs in a measurement include the known digits plus a final estimated digit 2.35 cm

Significant Figures  Counting Sig Figs (pg. 57)  Count all numbers EXCEPT:  Leading zeros  Trailing zeros without a decimal point -- 2,500

, Significant Figures Counting Sig Fig Examples , sig figs 3 sig figs 2 sig figs

Significant Figures  Calculating with Sig Figs  Multiply/Divide - The # with the fewest sig figs determines the # of sig figs in the answer. (13.91g/cm 3 )(23.3cm 3 ) = g 324 g 4 SF3 SF

Significant Figures  Calculating with Sig Figs (con’t)  Add/Subtract - The # with the lowest decimal value determines the place of the last sig fig in the answer mL mL 7.85 mL 224 g g 354 g  7.9 mL 3.75 mL mL 7.85 mL Since no decimals, the number stays as is

Significant Figures  Calculating with Sig Figs (con’t)  Exact Numbers do not limit the # of sig figs in the answer.  Counting numbers: 12 students  Exact conversions: 1 m = 100 cm  “1” in any conversion: 1 in = 2.54 cm

Significant Figures 5. (15.30 g) ÷ (6.4 mL) Practice Problems = g/mL  18.1 g g g g 4 SF2 SF  2.4 g/mL 2 SF