16.05.2009FISSION-2009 1 The Influence of Rotation of the Scissioning Nucleus onto Angular Distribution of Light Particles in Ternary Fission Induced by.

Slides:



Advertisements
Similar presentations
Measurements of Angular and Energy Distributions of Prompt Neutron Emission from Thermal Induced Fission Vorobyev A.S., Shcherbakov O.A., Gagarski A.M.,
Advertisements

M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
Monte Carlo Simulation of Prompt Neutron Emission During Acceleration in Fission T. Ohsawa Kinki University Japanese Nuclear Data Committee IAEA/CRP on.
Study of plastic scintillators for fast neutron measurements
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
THE AUSTRALIAN NATIONAL UNIVERSITY Infrasound Technology Workshop, November 2007, Tokyo, Japan OPTIMUM ARRAY DESIGN FOR THE DETECTION OF DISTANT.
Prospects for STEFF at EAR2 A.G.Smith, J.Billowes, R.Frost, E.Murray, J.Ryan, S.Warren,T.Wright The University of Manchester A. Pollitt ILL Grenoble I.
Emission of Scission Neutrons: Testing the Sudden Approximation N. Carjan Centre d'Etudes Nucléaires de Bordeaux-Gradignan,CNRS/IN2P3 – Université Bordeaux.
The Collective Model Aard Keimpema.
A. Dokhane, PHYS487, KSU, 2008 Chapter3- Thermal Neutrons 1 NEWS Need to fix a date for the mid-term exam? The first week after vacation!
Angular Momenta of near-spherical Fission Fragments F. Gönnenwein, University of Tübingen, Germany I.Tsekhanovich, University of Manchester, UK V. Rubchenya,
Fission potential energy surfaces in ten-dimensional deformation space. Vitaly Pashkevich Joint Institute for Nuclear Research. Dubna, Russia Yuri Pyatkov.
NECK FRAGMENTATION IN FISSION AND QUASIFISSION OF HEAVY AND SUPERHEAVY NUCLEI V.A. Rubchenya Department of Physics, University of Jyväskylä, Finland.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
L. Tassan-Got – IPN Orsay Nuclear data and reactor physics Radiotoxicity and spent fuel.
P461 - decays II1 Parity Violation in Beta Decays The Parity operator is the mirror image and is NOT conserved in Weak decays (is conserved in EM and strong)
Anisotropic neutron evaporation from spinning fission fragments Kazimierz Kaz 01 E. Chernysheva, Frank Lab Dubna O. Dorvaux, In2P3 Strasbourg.
Parity Violation in the Compound Nucleus G. E. Mitchell North Carolina State University.
Decay Rates: Pions u dbar Look at pion branching fractions (BF)
The Development of Particle Physics
F. Cheung, A. Samarian, W. Tsang, B. James School of Physics, University of Sydney, NSW 2006, Australia.
Multiplicity and Energy of Neutrons from 233U(nth,f) Fission Fragments
| PAGE 1 2nd ERINDA Progress MeetingCEA | 10 AVRIL 2012 O. Serot, O. Litaize, D. Regnier CEA-Cadarache, DEN/DER/SPRC/LEPh, F Saint Paul lez Durance,
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
The “Scission Neutron Emission” is last or first stage of nuclear fission? Nikolay Kornilov.
Beatriz Jurado, Karl-Heinz Schmidt CENBG, Bordeaux, France Supported by EFNUDAT, ERINDA and NEA The GEneral Fission code (GEF) Motivation: Accurate and.
Shell Model based deformation analysis of light Cadmium isotopes T. Schmidt 1, A. Blazhev 1, K. Heyde 2, J. Jolie 1 1 Institut für Kernphysik, Universität.
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
Quadrupole collectivity in neutron-rich Cd isotopes Thorsten Kröll for the IS411/IS477/IS524 collaborations Work supported by BMBF (Nr. 06DA9036I and 05P12RDCIA),
Shape phase transition in neutron-rich even-even light nuclei with Z=20-28 H.B.Bai X.W.Li H.F.Dong W.C.Cao Department of Physics, Chifeng University, Chifeng.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Pygmy Dipole Resonance in 64Fe
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Neutron enrichment of the neck-originated intermediate mass fragments in predictions of the QMD model I. Skwira-Chalot, T. Cap, K. Siwek-Wilczyńska, J.
Víctor M. Castillo-Vallejo 1,2, Virendra Gupta 1, Julián Félix 2 1 Cinvestav-IPN, Unidad Mérida 2 Instituto de Física, Universidad de Guanajuato 2 Instituto.
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
UCN magnetic storage and neutron lifetime V.F.Ezhov Petersburg Nuclear Physics Institute, Gatchina, Russia. (ITEP )
ChE 452 Lecture 25 Non-linear Collisions 1. Background: Collision Theory Key equation Method Use molecular dynamics to simulate the collisions Integrate.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
A. Bondarevskaya Highly charged ion beam polarization and its application to the search for the parity nonconservation effects in ions
Fission cross sections and the dynamics of the fission process F. -J
LATHE VIBRATIONS ANALYSIS ON SURFACE ROUHHNESS OF MACHINED DETAILS LATHE VIBRATIONS ANALYSIS ON SURFACE ROUHHNESS OF MACHINED DETAILS * Gennady Aryassov,
Angular Momentum of Spherical Fission Fragments F. Gönnenwein University of Tübingen In collaboration with V. Rubchenya and I.Tsekhanovich Saclay May 12,2006.
Lawrence Livermore National Laboratory Daniel Gogny’s Vision for a Microscopic Theory of Fission DRAFT Version 1 First Gogny Conference, December 2015.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Huaizhang Deng Yale University Precise measurement of (g-2)  University of Pennsylvania.
A.V. Ramayya and J.H. Hamilton Vanderbilt University.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Run Time, Mott-Schwinger, Systematics, Run plan David Bowman NPDGamma Collaboration Meeting 10/15/2010.
Triaxiality in nuclei: Theoretical aspects S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden,
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Fluctuations, Instabilities and Collective Dynamics L. P. Csernai 1 and H. Stöcker 2 1 Institute of Physics and Technology, University of Bergen, Allegaten.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Measurement of parity-violating asymmetries in the reactions of light nuclei with polarized neutrons ( 6.
Monte Carlo methods in spallation experiments Defense of the phD thesis Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
qBOUNCE: a quantum bouncing ball gravity spectrometer
Molecular Spectroscopy
Relativistic Kinematics for the Binding Energy of Nuclear Reactions
Is the caloric curve a robust signal of the phase transition
Ternary Fission and Neck Fragmentation
Hans-Jürgen Wollersheim
Triple-Humped Fission Barrier and Clusterization in the Actinide Region A. Krasznahorkay Inst. of Nucl. Res. of the Hungarian Acad. of Sci. (ATOMKI) Debrecen,
Gravitational Quantum States of Antihydrogen
Isospin Symmetry test on the semimagic 44Cr
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
STUDIES OF FISSION DYNAMICS THROUGH THE SEARCH OF SCISSION NEUTRONS
Presentation transcript:

FISSION The Influence of Rotation of the Scissioning Nucleus onto Angular Distribution of Light Particles in Ternary Fission Induced by Cold Polarized Neutrons A.Gagarski, PNPI, Russia Petersburg Nuclear Physics Institute, Gatchina, RUSSIA Physikalisches Institut, Tübingen, GERMANY Institut für Kernphysik, TU Darmstadt,GERMANY Frank Laboratory, JINR, Dubna,RUSSIA Khlopin Radium Institute, St.Petersburg, RUSSIA Department of Physics, University of Jyväskylä,FINLAND Institut Laue-Langevin, Grenoble, FRANCE

FISSION Introduction p LF p HF p TP ~82 o For 252 Cf from M. Mutterer et al.

FISSION Ternary fission by polarized neutrons p LF p HF W1W1 σ0σ0 p TP W0W0 Questions: Is W1 = W0 ? Does the rotational (or mirror) symmetry hold? What happens if we reverse the spin? Answers: W1 ≠ W0 (up to ~10 –2 ) Symmetry is violated The angular distribution will change.

FISSION ROT effect p LF p HF σ0σ0 p TP

FISSION TRI effect p LF σ0σ0 p TP p HF

FISSION Experimental method Measurement of all involved angles: Diodes size ~30x30 mm 2 Position sensitive MWPCs (~ 2 mm) Spectroscopy of fission products: Energies of TPs, Masses and energies of FFs from times of flight Neutron spin flip frequency 1 Hz Relative measurements Control and suppression of false setup asymmetries: Comparing of A obtained for events recorded by symmetrical detector combinations Depolarized neutrons beam SD- array LF HF MWPC TP SD- array σ+σ+ σ–σ– MWPC

FISSION The setup

FISSION The ROT asymmetry in the counts rates LF HF TP σ+σ+ σ–σ–

FISSION The TRI asymmetry in the counts rates LF HF TP σ+σ+ σ–σ–

FISSION Dependences of the Asymmetries on LF-LCP angle Y(θ) – the experimental angular distribution Y'(θ)– its derivative S ROT is characteristic parameter of ROT effect– the angular shift between TP distributions for the two spin polarizations D TRI characterized TRI effect – it is one half of the relative difference in total probabilities for TPs to be emitted towards the upper (lower) hemisphere for the two spin directions Corrections: – degree of polarization of the neutron beam – admixture of accidental coincidences – portion of wrongly identified LF-HF – the geometrical efficiency

FISSION Experimental dependencies and their fits 235 U 233 U 239 Pu TRI and ROT effects parameters ReactionJS ROT ( o )D TRI (×10 3 ) 235 U(n,f)3 –, 4 –   U(n,f)2 +,   0.03 –3.90  Pu(n,f)0 +,  –0.23  0.09

FISSION Experimental dependencies and their fits

FISSION Model of ROT-effect

FISSION Model of ROT-effect S ROT The collective rotation lasts also during the acceleration phase of TPs in Coulomb field of the FFs. The rotation deflects the LCP trajectory in the coordinate frame linked with FFs towards or away from the LF depending on the rotation direction.

FISSION Model of ROT-effect The rotation is being polarized after capturing of the polarized cold neutron  Effective R – averaged over (J,K)

FISSION Trajectory calculations Calculations for rotating nucleus (!) Starting scission configuration was optimized to describe known experimental angular and energy distributions of ternary particles σ(J,K)  R  ω σ(4–) / σ(3–) = 1.8 (Kopach et al.); for J = 4 K = 0 and for J = 3 K = 2 were taken  R ~ 0.7 h for 235 U Details can be found in contribution made by I. Guseva

FISSION ω P LF Naive explanation for TRI-effect ROT: motion in Coulomb field after scission of rotating nucleus, direct indicator of the rotation, allow to determine the velocity and direction of the rotation TRI: influence of the rotation onto axial symmetry in the neck just before rupture or directly at rupture moment v F Corio v F Catap r ω P LF

FISSION Values of ROT- and TRI-effects TRI and ROT effects parameters ReactionJS ROT ( o )D TRI (×10 3 ) 235 U(n,f)3 –, 4 –   U(n,f)2 +,   0.03 –3.90  Pu(n,f)0 +,  –0.23  0.09 Variation of ROT values: different mixtures of (J,K) channels in the cross-section Variation of TRI values : interplay between Coriolis and Catapult forces. Catapult is always there if there is a rotation, while Coriolis needs vibrations related with K. Higher K  lower R! 239Pu is especially interesting --- less contributed channels

FISSION Perspectives Study of the influence of transition states spins and parities onto TRI- и ROT-asymmetries signs and values : 233 U(n,f) (J =2+, 3+) have to be re-measured with better accuracy; interesting to compare it with 241 Pu(n,f) (J =2+, 3+); another possible candidate is 245 Cm(n,f) (J=3+,4+) Comparison of the TRI- и ROT-effects in resonances of 236 U* neutron energy, eV 236 U* total σ, b Search for TRI- и ROT-effects for fast neutrons and gammas from 235 U(n,f)

FISSION Conclusion The angular distribution of light particles in ternary fission by polarized neutrons exhibits two type of effects while flipping the neutron spin: TRI-effect (different probabilities to be emitted into opposite hemispheres), and ROT-effect (shift of the angular distributions relative to the light fragment direction). Both effects were studied and separated in 233 U(n th,f), 235 U(n th,f), 239 Pu(n th,f). The results show that the effects are very sensitive to the scission configuration and parameters of transition states, and hence they can give a new possibility to study fission process. Theoretical study of the asymmetries is very important

FISSION

FISSION Fitting for individual slices of the parameters The fission events data were sorted into “slices” over parameters: E TP, M LF, E tot Fitting by model function D ROT (E TP ), D ROT (M LF ), D ROT (E tot ), S ROT (E TP ), S ROT (M LF ), S ROT (E tot )

FISSION TRI-effect in 235 U (D TRI “SCALING” coefficient )

FISSION Trajectory calculations of ROT effect in 235 U Effective momentum R was calculated from: σ(J 4– ) / σ(J 3– ) = 1.8 (Kopach et al.) for J 4– K = 0 and for J 3– K = 2 were taken

FISSION Основные экспериментальные результаты (TRI эффект в 233 U) ( г.)  = –3.9  0.12  и p-d-t = –2.9  0.5  10 -3

FISSION Статистическая модель Бунакова для TRI- асммметрии Есть некоторый вклад начального спина нейтрона в соответствующую проекцию углового момента осколков в момент деления TP уносит угловой момент из делящейся системы В зависимости от направления эмиссии TP, соответствующая проекция углового момента осколков увеличивается или уменьшается плотность уровней системы зависит этой проекции, а в статистической модели плотность уровней определяет вероятность JLJL JHJH ll

FISSION Статистическая модель Бунакова для TRI- асммметрии Спин компаунд ядра Угловой момент TP Параметр плотности уровней Поляризация компаунд ядра Момент инерции Внутреннее возбуждение осколков Фактор передачи поляризации P(J + ) = (2I + 3) / [3  (2I + 1)]  P n дляJ + = I + 1/2 P(J – ) = –1/3  P n дляJ – = I – 1/2 Сечение при низких энергиях – суперпозиция резонансов  D = [D(J + )  σ(J + )+D(J – )  σ(J – )] / [σ(J + )+σ(J – )]

FISSION Энергия возбуждения Кинетическая энергия Потенциальная энергия R, ферми E  tot = E  sc + Δ V E k tot = E k sc + E k coul J J J КАЧЕСТВЕННАЯ КАРТИНА ПРОЦЕССА ДЕЛЕНИЯ Точка разрыва ~20 ферми) Деформация, ферми Наиболее актуальная проблема современной физики деления – динамика спуска сильно деформированного ядра с барьера и его разрыв! ЕрЕр ЕрЕр ЕсЕс ЕсЕс Е*Е* Е*Е* Е k Е * tot E k tot

FISSION Исследование Т-нечётной асимметрии в зависимости от параметров продуктов деления Нейтронный пучок (PF1 в ИЛЛ): ~ 4.5Å; Φ capture ~6  10 8 n/cm 2 s; продольно поляризован ~ 94  1 %; радиочастотный флиппер 1 Гц Мишень ~3.4 мг 233 U (UF 4 ) ~100 мкг/см 2 на тонкой титановую пленке (~100 мкг/см 2 ) PIN диодов для TP, каждый 30  30 мм, толщина 380 мкм Определение типа частицы по времени нарастания сигналов с PIN диодов Координатная чувствительность MWPC (~2 мм по обеим координатам)  положение на мишени и углы  можно определить: –массу осколков : M1/M2  T1/T2, –кинетическую энергию: E=E1+E2  L2  A/2T1  T2 (Разрешение невелико , поскольку  T/T~1/10)

FISSION Model of ROT-effect S ROT LF HF The collective rotation lasts also during the acceleration phase of TPs in Coulomb field of the FFs. The rotation deflects the LCP trajectory in the coordinate frame linked with FFs towards or away from the LF depending on the rotation direction.

FISSION Модель ROT-эффекта