Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud - 080304 Workshop Leiden 2005 Performance of wave-front measurement concepts for GLAO M. NICOLLE 1, T. FUSCO.

Slides:



Advertisements
Similar presentations
Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Vision for IR Astronomy - 21 mars 2006 MultiConjugate Adaptive Optics from VLTs to ELTs J.-M. Conan(1),
Advertisements

Fast & Furious: a potential wavefront reconstructor for extreme adaptive optics at ELTs Visa Korkiakoski and Christoph U. Keller Leiden Observatory Niek.
GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.
Kinematics/Dynamics  Chemistry/dust  Stellar populations  Searches for z ~ 6-7 « Hot » scientific researches at VLT in cosmology Mass Galaxy formation/gas.
NGAO Companion Sensitivity Performance Budget (WBS ) Rich Dekany, Ralf Flicker, Mike Liu, Chris Neyman, Bruce Macintosh NGAO meeting #6, 4/25/2007.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
Widening the Scope of Adaptive Optics Matthew Britton.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Photometric Accuracy Budget Strategy Richard Dekany.
A Short Presentation of Ongoing AO Work at Lund Observatory Mette Owner-Petersen Lund Observatory Workshop for “Forskarskolen i Rymdteknik” Gothenburg.
Adaptive Optics Model Anita Enmark Lund Observatory.
The Noise Propagator for Laser Tomography Adaptive Optics Don Gavel NGAO Telecon October 8, 2008.
Wavefront Sensing II Richard Lane Department of Electrical and Computer Engineering University of Canterbury.
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
Cn2 profile measurement from Shack-Hartmann data
 Johann Kolb, Norbert Hubin  Mark Downing, Olaf Iwert, Dietrich Baade Simulation results:  Richard Clare Detectors for LGS WF sensing on the E-ELT 1AO.
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Adaptive Optics in the VLT and ELT era Beyond Basic AO
Laboratory prototype for the demonstration of sodium laser guide star wavefront sensing on the E-ELT Sexten Primary School July 2015 THE OUTCOME.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
19 February 2009 Cophasing sensor for synthetic aperture optics applications First steps of the development of a cophasing sensor for synthetic aperture.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
GLAO simulations at ESO European Southern Observatory
1 Manal Chebbo, Alastair Basden, Richard Myers, Nazim Bharmal, Tim Morris, Thierry Fusco, Jean-Francois Sauvage Fast E2E simulation tools and calibration.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
NSF Center for Adaptive Optics UCO Lick Observatory Laboratory for Adaptive Optics Tomographic algorithm for multiconjugate adaptive optics systems Donald.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
Update to End to End LSST Science Simulation Garrett Jernigan and John Peterson December, 2004 Status of the Science End-to-End Simulator: 1. Sky Models.
Low order modes sensing for LGS MCAO with a single NGS S. Esposito, P. M. Gori, G. Brusa Osservatorio Astrofisico di Arcetri Italy Conf. AO4ELT June.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
From NAOS to the future SPHERE Extreme AO system T. Fusco 1, G. Rousset 1,2, J.-L. Beuzit 3, D. Mouillet 3, A.-M. Lagrange 3, P. Puget 2 and many others.
Fundamentals of closed loop wave-front control
Future Plan of Subaru Adaptive Optics
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Strehl Ratio estimation. SR from H band images High Strehl PSF ->fitting with Zernike modes We suppose: No relevant loss of energy due to high modes (Z>36)
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
Improved Tilt Sensing in an LGS-based Tomographic AO System Based on Instantaneous PSF Estimation Jean-Pierre Véran AO4ELT3, May 2013.
1 Leonardo Pinheiro da Silva Corot-Brazil Workshop – October 31, 2004 Corot Instrument Characterization based on in-flight collected data Leonardo Pinheiro.
Introduction 1. Similarity 1.1. Mechanism and mathematical description 1.2. Generalized variables 1.3. Qualitative analysis 1.4. Generalized individual.
Aldo Dell'Oro INAF- Observatory of Turin Detailed analysis of the signal from asteroids by GAIA and their size estimation Besançon November 6-7, 2003.
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
AO4ELT, June Wide Field AO simulation for ELT: Fourier and E2E approaches C. Petit*, T. Fusco*, B. Neichel**, J.-F. Sauvage*, J.-M. Conan* * ONERA/PHASE.
Shack-Hartmann tomographic wavefront reconstruction using LGS: Analysis of spot elongation and fratricide effect Clélia Robert 1, Jean-Marc Conan 1, Damien.
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Experimental results of tomographic reconstruction on ONERA laboratory WFAO bench A. Costille*, C. Petit*, J.-M. Conan*, T. Fusco*, C. Kulcsár**, H.-F.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
GLAO Workshop Leiden April 2005 Remko Stuik Leiden Observatory.
Quality of model and Error Analysis in Variational Data Assimilation François-Xavier LE DIMET Victor SHUTYAEV Université Joseph Fourier+INRIA Projet IDOPT,
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Osservatorio Astronomico di Padova A study of Pyramid WFS behavior under imperfect illumination Valentina Viotto Demetrio Magrin Maria Bergomi Marco Dima.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
The Self-Coherent Camera: a focal plane wavefront sensor for EPICS
Fundamentals of adaptive optics and wavefront reconstruction Marcos van Dam Institute for Geophysics and Planetary Physics, Lawrence Livermore National.
AO4ELT, Paris A Split LGS/NGS Atmospheric Tomography for MCAO and MOAO on ELTs Luc Gilles and Brent Ellerbroek Thirty Meter Telescope Observatory.
Charts for TPF-C workshop SNR for Nulling Coronagraph and Post Coron WFS M. Shao 9/28/06.
C n 2 profile reconstruction with Shack-Hartmann slope and scintillation data: first on-sky results J. Voyez (1), C. Robert (1), J.-M. Conan (1), V. Michau.
François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 GSMT AO Simulations.
Gemini AO Program March 31, 2000Ellerbroek/Rigaut [ ]1 Scaling Multi-Conjugate Adaptive Optics Performance Estimates to Extremely Large Telescopes.
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Introduction to Differential Equations
Lecture 14 AO System Optimization
ECE3340 Numerical Fitting, Interpolation and Approximation
Pyramid sensors for AO and co-phasing
Spectrophotometric calibration of the IFU spectrograph
Fundamentals Data.
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Performance of wave-front measurement concepts for GLAO M. NICOLLE 1, T. FUSCO 1, V. MICHAU 1, G. ROUSSET 1, J.-L. BEUZIT 2 1 ONERA - DOTA, Châtillon, France 2 LAOG, Grenoble, France Mail:

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Outline Problem statement, An analytical criterion for GLAO performance estimation, SO and LO performance analysis, Optimization of SO and LO measurement, Conclusions and future works. Introduction – Analytical criterion – SO & LO Optimization - Conclusion

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Ground Layer turbulence measurement : Altitude  PUP =  1 +  2 +  3 = 3  sol +  1 alt +  2 alt +  3 alt  0 0 DD Introduction – Analytical criterion – SO & LO Optimization - Conclusion  GLAO: wide FOV seeing reducer;  Needs a uniform correction in FOV:  That ’s why we want to measure only the boundary layer,  A solution for that is to estimate:  We only can measure :  BUT available phases are:

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Wave-front sensing devices Shack-Hartmann ? Other ? Pyramid ? A triple problem : Number ? Magnitude ? Natural ? Artificial ? Star Oriented ?Layer Oriented ?Other ? Introduction – Analytical criterion – SO & LO Optimization - Conclusion Guides Stars (available phases) Wave-front measurement concept (measured phases)

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Tools for GLAO performance analysis : Introduction – Analytical criterion – SO & LO Optimization - Conclusion Two models have been used:  Numerical model, for both study of Guides Stars impact and WFMC performance:  Simulates uniform, random or Galactic-model based Guide Stars fields;  Simulates Star Oriented and Layer Oriented WFMC;  Complex turbulence profile;  Decomposition of phases onto Zernike polynomials;  Simulates photon and detector noises;  Modal optimization;  Computes long exposure PSF, encircled energy, residual phase variances.  Analytical model, for WFMC performance analysis:  Based on an analytical criterion  Considered variable: phase slopes as measured by Shack-Hartmann WFS

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005  Wave-front measurement error: Wave-front measurement Error : Introduction – Analytical criterion – SO & LO Optimization - Conclusion Phase to be estimated: Measured phase:

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 QC VS usual quality criterions for GLAO : Introduction – Analytical criterion – SO & LO Optimization - Conclusion  Wave-front measurement error: Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; WFS : 0.7 µm; Photon noise only GS integrated magnitude in R : 12. GS uniformly spread in FOV; Phases measurement  Shack-Hartmann slopes. Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; WFS : 0.7 µm; Photon noise only GS integrated magnitude in R : 12. GS uniformly spread in FOV; Phases measurement  Shack-Hartmann slopes. FOV 8 arcmin wide,

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Secondary Quality criterions on phase : Introduction – Analytical criterion – SO & LO Optimization - Conclusion Phase to be estimated Measured phase Independent from WFMC Phase to be measured

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 QC quantize characteristics: Introduction – Analytical criterion – SO & LO Optimization - Conclusion  1./  K 

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Secondary Quality criterions on phase : Introduction – Analytical criterion – SO & LO Optimization - Conclusion Phase to be estimated Measured phase Independent from WFMC Phase to be measured Star OrientedLayer Oriented

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 QC WFMC for Star Oriented: Introduction – Analytical criterion – SO & LO Optimization - Conclusion Analytical criterion :  Criterion derivation for SO : Photon Noise term Depends on: Flux per GS Flux per GS (= flux per WFS) CCD Read-out noise Detector Noise term: Depends on: COMMAND Pupil 1 WFS / GS DM We measure:

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 QC WFMC for Layer Oriented: DM COMMAND Pupil 1 WFS Introduction – Analytical criterion – SO & LO Optimization - Conclusion Phases weighted by GS flux 1 WFS only Photon Noise term Depends on: Total flux in FOV. Total flux in FOV, CCD Read-out noise. Detector Noise term Depends on: Turbulence related term Depends on: Total flux in FOV, GS flux dispersion, Covariance of phase perturbations From one direction to another. Analytical criterion :

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Performance analysis for SO / LO : Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; l WFS : 0.7 µm; s 2 det : 3 e - (when simulated); Galactic coordinates : lat = 30°, lon = 0°; Repartition of GS mag. simulated from Besançon Model; At least 4 GS in Technical FoV; Phases measurement  Shack-Hartmann slopes. Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; l WFS : 0.7 µm; s 2 det : 3 e - (when simulated); Galactic coordinates : lat = 30°, lon = 0°; Repartition of GS mag. simulated from Besançon Model; At least 4 GS in Technical FoV; Phases measurement  Shack-Hartmann slopes. Introduction – Analytical criterion – SO & LO Optimization - Conclusion 4 GS ~30 GS

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Star Oriented Optimization: We measure:That we can employ as we want.  We can consider :  Criterion derivation for OSO :   i optimal only if :  Linear Matricial equation to invert.  Solution exists. numerical coefficients to be optimized Introduction – Analytical criterion – SO & LO Optimization - Conclusion

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Performance analysis for SO / LO : Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; l WFS : 0.7 µm; s 2 det : 1 e - (when simulated); Galactic coordinates : lat = 30°, lon = 0°; Repartition of GS mag. simulated from Besançon Model; At least 4 GS in Technical FoV; Phases measurement  Shack-Hartmann slopes. Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; l WFS : 0.7 µm; s 2 det : 1 e - (when simulated); Galactic coordinates : lat = 30°, lon = 0°; Repartition of GS mag. simulated from Besançon Model; At least 4 GS in Technical FoV; Phases measurement  Shack-Hartmann slopes. Introduction – Analytical criterion – SO & LO Optimization - Conclusion

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Layer Oriented Optimization: We measure only one integrated phase !  We can consider :  We can optimize it by attenuating optically some GS;  We can account for the WFS SNR in the use of this phase measurement; numerical coefficient to be optimizedOptical attenuations to be optimized Introduction – Analytical criterion – SO & LO Optimization - Conclusion

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Layer Oriented Optimization:  Criterion derivation for OLO : Introduction – Analytical criterion – SO & LO Optimization - Conclusion  analytical solution exists.  optimization:  NON linear equation to invert.  Multi-variable optimization.  i  optimization:

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Analyse performance SO / LO : Introduction – Analytical criterion – SO & LO Optimization - Conclusion 4 GS 30 GS Galactic coordinates : (30, 0) 8x8 arcmin FoV

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Conclusions … Study of the influence of GS number and repartition on GLAO performance uniformity Performance analysis for both SO and LO WFMC:  Analytical modelization and definition of a quality criterion based on phase measurement error for SO and LO WFMC,  SO performance is mainly limited by Detector noise,  LO performance is mainly limited by GS flux dispersion; Optimisation of both SO and LO measurements:  SO: numerical optimization  LO: both numerical and optical optimizations;  Identical performance of SO and LO in photon noise,  Slight gain for LO in detector noise,  Very small dependency of the errors with respect to GS number. Introduction – Analytical criterion – SO & LO Optimization - Conclusion

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 … And future works :  GLAO:  Global optimization of  Complete Sky coverage study,  Scaling to ELT,  MCAO: Generalization to Multiple FOV concept,  Real data process (MAD results ?) Introduction – Analytical criterion – SO & LO Optimization - Conclusion

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Wave-front measurement Error : Introduction – Analytical criterion – SO & LO Optimization - Conclusion  Wave-front measurement error: Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; WFS : 0.7 µm; Photon noise only GS integrated magnitude in R : 12. GS uniformly spread in FOV; Phases measurement  Shack-Hartmann slopes. Conditions of the numerical simulation : Technical FoV : 8 arcmin; Seeing : µm; Turbulence profile : 60% in pupil plane, 40% in altitude; WFS : 0.7 µm; Photon noise only GS integrated magnitude in R : 12. GS uniformly spread in FOV; Phases measurement  Shack-Hartmann slopes. FOV 8 arcmin wide, 37 guide stars

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Splitting of QC: Introduction – Analytical criterion – SO & LO Optimization - ConclusionQC QC quantize QC WFMC Saturation due to pupil footprints superimposition

Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Secondary Quality criterions on phase : Introduction – Analytical criterion – SO & LO Optimization - Conclusion Phase to be estimated Measured phase Independent from WFMC Phase to be measured