Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Robert C. Dunbar Case Western Reserve University Nick C. Polfer, Jos Oomens FOM-Institute for Plasma Physics Structure Investigation of Cation-Pi Complexes.
Water Solvation of Copper Hydroxide Brett Marsh-UW Madison.
Helium Nanodroplet Isolation Spectroscopy of NO 2 and van der Waals Complexes Robert Fehnel Kevin Lehmann Department of Chemistry University of Virginia.
Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku University, Japan Jer-Lai Kuo Institute of Atomic and Molecular.
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Carbon Dioxide Clusters and Copper Complexes Formed in Argon Matrices Michael E. Goodrich & David T. Moore Chemistry Department, Lehigh University Bethlehem.
Structural Isomerization of the Gas Phase 2-Norbornyl Cation Revealed with Infrared Spectroscopy and Computational Chemistry Dept. of Chemistry University.
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
Structure Determination of Silicon Clusters in the Gas Phase A Vibrational Spectroscopy and DFT Investigation Jonathan T. Lyon, Philipp Gruene, Gerard.
Motivation: CO 2 capture System: Metal-Organic Frameworks Data: Unusual blue shift of adsorbed CO 2 3 mode Room-temperature sidebands Low-temperature bands.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF Al-URACIL COMPLEX Sergiy Krasnokutski and Dong-Sheng Yang University of Kentucky, Lexington, KY 40506,
Structures and Spin States of Transition-Metal Cation Complexes with Aromatic Ligands Free Electron Laser IRMPD Spectra Robert C. Dunbar Case Western Reserve.
Aloke Das Indian Institute of Science Education and Research, Pune Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase.
Biswajit Bandyopadhyay, Tim Cheng and Michael A. Duncan Department of Chemistry, University of Georgia, Athens, GA,
Infrared Photodissociation Spectroscopy of Silicon Carbonyl Cations
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Pulsed Field Ionization-Zero Electron Kinetic Energy (PFI-ZEKE) Spectroscopy of Sc-C 6 H 5 X(X=F,CH 3,OH) Complexes Changhua Zhang, Serge A. Krasnokutskia.
Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Tunable Infrared Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy of Thin Films Timothy Cheng, Michael Duncan Department of Chemistry, University.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Department of Chemistry, University of Georgia, Athens, GA National Science Foundation Infrared.
Conformation specific spectroscopy of jet- cooled 4-phenyl-1-butene Joshua A. Sebree, Josh J. Newby, Nathan R. Pillsbury, Timothy Zwier Department of Chemistry,
Theoretical Investigation of the M + –RG 2 (M = Alkaline Earth Metal; RG = Rare Gas) Complexes Adrian M. Gardner, Richard J. Plowright, Jack Graneek, Timothy.
Multiple Photon Absorption in Hydrated Cesium Ion Clusters Jordan Beck, Jim Lisy June 17,2008 OSU International Symposium on Molecular Spectroscopy.
Kristin Breen, Helen Gerardi, George Gardenier, Timothy Guasco,
Infrared Spectroscopy & Structures of Mass-Selected Rhodium Carbonyl & Rhodium Dinitrogen Cations Heather L. Abbott, 1 Antonio D. Brathwaite 2 and Michael.
Infrared Photodissociation Spectroscopy of TM + (N 2 ) n (TM=V,Nb) Clusters E. D. Pillai, T. D. Jaeger, M. A. Duncan Department of Chemistry, University.
11 CHEM 344 Organic Chemistry Lab September 9 th and 10 th 2008 Spectroscopy of Organic Compounds Lecture 3 –Infrared and Mass Spec.
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
Towards Isolation of Organometallic Iridium Catalytic Intermediates Arron Wolk Johnson Laboratory Thursday, June 20 th, 2013.
Vibrational Predissociation Spectra in the Shared Proton Region of Protonated Formic Acid Wires: Characterizing Proton Motion in Linear H-Bonded Networks.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
Antonio D. Brathwaite University of the Virgin Islands, St Thomas, USVI.
Infrared Resonance Enhanced Photodissociation (IR- REPD) Spectroscopy used to determine solvation and structure of Ni + (C 6 H 6 ) n and Ni + (C 6 H 6.
Infrared Spectroscopy of Protonated Benzene Clusters Biswajit Bandyopadhyay, Timothy Cheng and Michael A. Duncan University.
PFI-ZEKE Spectroscopy of Aluminum-Imidazole and -Pyrimidine Complexes JUNG SUP LEE, XU WANG, SERGIY KRASNOKUTSKI, and DONG-SHENG YANG University of Kentucky.
Infrared Resonance Enhanced Photodissociation of Au + (CO) n Complexes in the Gas Phase Joe Velasquez, III, E. Dinesh Pillai and Michael A. Duncan Department.
Hydrogen-bond between the oppositely charged hydrogen atoms It was suggested by crystal structure analysis. A small number of spectroscopic studies have.
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,
BigLight for Ion Cyclotron Resonance Nick Polfer University of Florida Gainesville, FL.
INFRARED SPECTROSCOPY OF (CH 3 ) 3 N-H + -(H 2 O) n (n = 1-22) Ryunosuke Shishido, Asuka Fujii Department of Chemistry, Graduate School of Science, Tohoku.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
The Cyclic CO 2 Trimer: Observation of two parallel bands and determination of intermolecular out-of-plane torsional frequencies Steacie Institute for.
Spectroscopic and Theoretical Determination of Accurate CH/  Interaction Energies in Benzene-Hydrocarbon Clusters Asuka Fujii, Hiromasa Hayashi, Jae Woo.
John Herbert Department of Chemistry The Ohio State University Anion–water vs. electron–water hydrogen bonds 61 st Molecular Spectroscopy Symposium 6/23/06.
Capture and Structural Determination of Activated Intermediates in Transition Metal Catalyzed CO 2 Reduction Using CIVP Spectroscopy Stephanie Craig Johnson.
Asymmetry of M + (H 2 O)RG Complexes, (M=V, Nb) Revealed with Infrared Spectroscopy Timothy B Ward, Evangelos Miliordos, Sotiris Xantheas, Michael A Duncan.
Velocity Map Imaging Study of a Mass-Selected Ion Beam: the Photoinitiated Charge-Transfer Dissociation of and Ag + (C 6 H 6 ) Jonathon A. Maner, Daniel.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
Water network-mediated, electron induced proton transfer in anionic [C 5 H 5 N·(H 2 O) n ]¯ clusters: Size-dependent formation of the pyridinium radical.
INFARED SPECTROSCOPY OF Mn(CO 2 ) n − CLUSTER ANIONS Michael C Thompson, Jacob Ramsay and J. Mathias Weber June 24, th International Symposium.
Vibrational Predissociation Spectroscopy of Homoleptic Heptacoordinate Metal Carbonyl Complexes Allen M. Ricks and Michael A. Duncan Department of Chemistry.
Infrared Spectroscopy of Protonated Acetylacetone and Mixed Acetylacetone/Water Clusters Daniel T. Mauney, David C. McDonald II, Jonathon A. Maner and.
Gas Phase Infrared Spectroscopy of Mass Selected Carbocations Department of Chemistry University of Georgia Athens Georgia, 30602
Charge Oscillation in C-O Stretching Vibrations: A Comparison of CO2 Anion and Carboxylate Functional Groups Michael C. Thompson, J. Mathias Weber 72nd.
Near-Infrared Spectroscopy of Small Protonated Water Clusters
Infrared spectroscopic investigation
E. D. Pillai, J. Velasquez, P.D. Carnegie, M. A. Duncan
Vibrational Spectroscopy and Theory of Cu+(CH4)n and Ag+(CH4)n (n=1-6)
Allen M. Ricks and Michael A. Duncan Department of Chemistry
Molecular Mechanism of Hydrogen-Formation in Fe-Only Hydrogenases
INFRARED SPECTRA OF ANIONIC COBALT-CARBON DIOXIDE CLUSTERS
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Vibrational Predissociation Spectroscopy of Uranium Complexes
Anil K. Kandalam* Department of Physics
Presentation transcript:

Infrared Photodissociation Spectroscopy of Aluminum Benzene Cation Complexes Nicki Reishus, Biswajit Bandyopadhyay and Michael A. Duncan Department of Chemistry, University of Georgia, Athens, GA

Metal benzene sandwiches In 1973 the Nobel prize was awarded to Geoffrey Wilkinson and Ernst Fischer for their work on sandwich compounds. 18 electron rule Fischer, E. O.; Hafner, W. Z. Naturforsch. 1955, 10b, 665. Sidgwick, N. V., The Electronic Theory of Valency. 1st ed.; Oxford University Press: Great Britain, 1927.

Previous work: Electronic spectroscopy: Duncan group reported charge transfer photodissociation for metal ion-benzene complexes 1 Mass Spec: Kaya and coworkers found multiple-decker sandwiches of transition metal-benzene complexes 2 Infrared Spec: Lisy and coworkers did infrared (IR) spectroscopy in the C-H stretch region on alkali cations on benzene 3 2. Nakajima, A.; Kaya, K., J. Phys. Chem. A 2000, 104 (2), Cabarcos, O. M.; Weinheimer, C. J.; Lisy, J. M., J. Chem. Phys. 1999, 110 (17), Willey, K. F.; Yeh, C. S.; Robbins, D. L.; Duncan, M. A., J. Phys. Chem. 1992, 96 (23),

FELIX IR-REMD (resonance enhanced multiphoton dissociation) used to study Fe, Co, Ni, Ti, V complexes in far-IR ν 19 red-shifted ν 11 blue-shifted Trends not clear due to broad peaks Jaeger, T. D.; van Heijnsbergen, D.; Klippenstein, S. J.; von Helden, G.; Meijer, G.; Duncan, M. A., J. Am. Chem. Soc. 2004, 126 (35),

OPO/OPA OPO/OPA used for C-H stretch region Ar tagging Fermi triad not seen until 3 rd benzene Peak from 1 & 2 benzenes seen under Fermi triad Jaeger, T. D.; Pillai, E. D.; Duncan, M. A., J. Phys. Chem. A 2004, 108 (32),

Al-bz FELIX 730 cm -1  ν 11 (out-of-plane H bend) 990 cm -1  ν 1 not IR active in free benzene (sym C stretch) 1481 cm -1  ν 19 (in-plane C ring distortion) van Heijnsbergen, D.; Jaeger, T. D.; von Helden, G.; Meijer, G.; Duncan, M. A., Chem. Phys. Lett. 2002, 364 (3-4),

Experimental Nd:YAG laser OPO/OPA range: cm -1 AgGaSe crystal increases scanning range: cm -1 Aluminum benzene mass spec:

FWHM ~50-70 cm -1 FWHM ~8 cm cm -1  sym. in-plane C-H bend, not IR active in bz

Al + (bz)Ar 3040 cm -1  C-C stretching 3064 cm -1  C-C stretching and bending 3102 cm -1  C-H stretch Binding energies: Al + (bz) = 30 kcal/mol, V + (bz) = 47.5 kcal/mol

Where does a 2 nd benzene go? Walters, R. S.; Brinkmann, N. R.; Schaefer, H. F.; Duncan, M. A., J. Phys. Chem. A 2003, 107 (38), Al +  3s 2 S orbital polarizable 1 st ligand polarizes S orbital

Symmetric sandwich or not? Fermi triad is seen, but greater red shift New band at 3070 cm -1

Comparison to benzene dimer Erlekam, U.; Frankowski, M.; Meijer, G.; von Helden, G., J. Chem. Phys. 2006, 124 (17). “Stem” “Top” For “stem” benzene the weakest peak is seen 3070 cm -1  π H-bond

Potential Structures: Theory Al + (bz)Ar Al + (bz) 2 Ar Binding energies of ligand (kcal/mol) Al + B3LYP/6-311+G** V + See ref. Co + See ref. M + -Benzene M + -(Benzene) M + - Benzene-Ar0.1n/a M + -(Benzene) 2 -Ar0.1n/a Jaeger, T. D.; van Heijnsbergen, D.; Klippenstein, S. J.; von Helden, G.; Meijer, G.; Duncan, M. A., J. Am. Chem. Soc. 2004, 126 (35),

Conclusions The mid and far-infrared spectra of argon tagged Al + (bz) 1,2 is measured. Better resolution than spectra from FELIX and increased range Band shifting clearly seen for the Al + (bz) Al + (bz) 2 appears to have an external benzene Better theory needed for Al + (bz) 2