COSMO Large Coronagraph Preliminary Design Review

Slides:



Advertisements
Similar presentations
Optics, Eugene Hecht, Chpt. 8
Advertisements

Outline Stokes Vectors, Jones Calculus and Mueller Calculus
Definitions for polarimetry Frans Snik Sterrewacht Leiden.
Coronal Magnetograph for Space and Ground-based Solar Observatories Silvano Fineschi Alessandro Bemporad, Gerardo Capobianco, Jessica Girella INAF –Astrophysical.
M3 Instrument Design and Expected Performance Robert O. Green 12 May 2005.
SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009 ANALYTIC OPTICS KENNETH NORDSIECK UNIVERSITY OF WISCONSIN.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is sponsored by.
Preliminary Design of the Spectropolarimeter for Arago Martin Pertenaïs 1,2 Coralie Neiner 1 (PI), Laurent Parès 2, Jean-Michel Reess 1, Pernelle Bernardi.
Calibration-Diagnostics Spectral Photometric/Gain Polarimetric Empirical or hardware calibrators NIRSPC or G Disk or Corona.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
10 -3 versus polarimetry: what are the differences? or Systematic approaches to deal with systematic effects. Frans Snik Sterrewacht Leiden.
Spectropolarimetry at THÉMIS Frédéric Paletou & Guillaume Molodij.
Polarimetry Christoph Keller. Polarimetry Requirements Polarization sensitivity: amount of fractional polarization that can be detected above a (spatially.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
ViSP Polarimetry David Elmore HAO/NCAR
3D Inversion of the Magnetic Field from Polarimetry Data of Magnetically Sensitive Coronal Ions M. Kramar, B. Inhester Max-Planck Institute for Solar System.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
1 Lites FPP-SP Performance SOT #17 Meeting, NAOJ, April Solar-B FPP As-Built Performance of the FPP Spectro- Polarimeter October, 2004 FPP Team Bruce.
Polarization Calibration of HMI A. Norton, J. Schou, D. Elmore, J. Borrero, S. Tomczyk, G. Card + High Altitude Observatory National Center for Atmospheric.
Alfvén Waves in the Solar Corona S. Tomczyk, S. Mclntosh, S. Keil, P. Judge, T. Schad, D. Seeley, J. Edmondson Science, Vol. 317, Sep., 2007.
Coronal magnetic field observations Useful coronal field model constraints can be obtained from IR observations This is a vigorous activity, with three.
Physics 681: Solar Physics and Instrumentation – Lecture 9 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Near Infrared Tunable Filter System for ATST Big Bear Solar Observatory & Solar Research Center, NJIT Aug. 25, 2003.
VOLUME-PHASE HOLOGRAPHIC GRATINGS FOR ASTRONOMICAL SPECTROGRAPHS James A. Arns, Willis S. Colburn, & Mark Benson (Kaiser Optical Systems, Inc.) Samuel.
Acknowledgments 7. Scenarios for the Source of Residual Polarization 2. The Hinode SOT/SP Optical System 5. Raw (Uncalibrated) Polarization Images of Focal.
P. Gömöry, J. Ambróz, J. Koza, M. Kozák, A. Kučera, J. Rybák, P. Schwartz S. Tomczyk, S. Sewell, P. Aumiller, R. Summers, L. Sutherland, A. Watt Astronomical.
AAO Fibre Instrument Data Simulator 10 October 2011 ROE Workshop 2011 Michael Goodwin Tony Farrell Gayandhi De Silva Scott Smedley Australian Astronomical.
Pushing the limits of Astronomical Polarimetry Frans Snik Sterrekundig Instituut Utrecht BBL 710
Liquid-Crystal Fabry-Perot filters
Partially Polarized Calibration Stimulus Gerard van Harten a, Frans Snik a, Christoph Keller a, Jeroen Rietjens b, Martijn Smit b a Leiden University,
Apr 17-22, Tunable filter wavelength scan and calibration of intensity ripple Y. Katsukawa (NAOJ) and SOT team.
Polarized V-band Stars for In-flight Calibration of Space-borne Solar Coronagraphs Capobianco, Gerardo; Fineschi, Silvano INAF- Osservatorio Astrofisico.
Collaboration of BBSO/NST and SOT Haimin Wang Big Bear Solar Observatory 1. Six-station Global Full Disk Halpha Network –Large scale structure of flares.
September 14, Monday 4. Tools for Solar Observations-II Spectrographs. Measurements of the line shift.
PACS FM-ILT SPECTROMETER SPATIAL CALIBRATION A. Contursi (H. Feuchtgruber) PACS Science Verification Review – 8/9 November 2007 MPE-Garching.
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
HIGH ALTITUDE OBSERVATORY NCAR – Boulder, CO Boulder Solar Days – Friday, March 20th, 2009 The Visible Spectro-Polarimeter (ViSP) A First-Light Instrument.
Polarization Calibration of the Daniel K Inouye Solar Telescope (DKIST) formerly Advanced Technology Solar Telescope David Elmore Instrument Scientist.
Coronal Spectro- polarimetry with the Turin Lyot-Filter Silvano Fineschi INAF – Astrophysical Observatory of Torino, Italy Future of Polarimetry - Brussels.
A.Kučera 1, S. Tomczyk 2, J. Ambróz 1, S. Sewell 2, J. Rybák 1, P. Aumiller 2, P. Gömöry 1, R. Summers 2, P. Habaj 1, L. Sutherland 2, J. Kavka 1, A. Watt.
Calibration of the Polarization Property of SOT K.Ichimoto, Y.Suematsu, T.Shimizu, Y.Katsukawa, M.Noguchi, M.Nakagiri, M.Miyashita, S.Tsuneta (National.
The Prime Focus Imaging Spectrograph Design and Capabilities
Fundamental of Optical Engineering Lecture 8.  A linearly polarized plane wave with Ē vector described by is incident on an optical element under test.
Resolution Limits for Single-Slits and Circular Apertures  Single source  Two sources.
Toward < 0.1% Accuracy with AO Polarimetry Sloane Wiktorowicz December 17, 2014 ShaneAO Workshop Sloane Wiktorowicz December 17, 2014 ShaneAO Workshop.
MIRI Dither Patterns Christine H Chen. Dithering Goals 1.Mitigate the effect of bad pixels 2.Obtain sub-pixel sampling 3.Self-calibrate data if changing.
Spectroscopic observations of CMEs Hui Tian Harvard-Smithsonian Center for Astrophysics Collaborators: Scott W. McIntosh, Steve Tomczyk New England Space.
COSMO Large Coronagraph Preliminary Design Review
The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is sponsored by.
Visible Spectro-polarimeter (ViSP) Conceptual Design David Elmore HAO/NCAR
The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is sponsored by.
The High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is sponsored by.
Diagnostic capability of FG/SP Kiyoshi Ichimoto NAOJ Hinode workshop, , Beijing.
Elliptical polarization. Linear polarization the two orthogonal components are in phase.
Transit of Venus Observations From National Solar Observatory.
The Prime Focus Imaging Spectrograph for the Southern African Large Telescope: Operational Modes Chip Kobulnicky – Instrument Scientist, University of.
Fabry-Perot Approach to SPRING Sanjay Gosain NSO.
Big Bear Solar Observatory Some ground-based technology developments that will propel solar physics Phil Goode for Jeff Kuhn Big Bear Solar Observatory.
Measuring Birefringence of Anisotropic Crystals
A new technique of detection and inversion
Phil Goode for Jeff Kuhn Big Bear Solar Observatory
S/N and Polarimetry With HMI
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
Polarimetry: Waveplate Modulation; Calibration
Meeting 11 Polarimetry: Beamsplitter; data formats Ken Nordsieck
Shanghai Institute of Technical Physics , Chinese Academy of Science
Elliptical polarization
This material is based upon work supported by the National Science Foundation under Grant #XXXXXX. Any opinions, findings, and conclusions or recommendations.
Presentation transcript:

COSMO Large Coronagraph Preliminary Design Review Birefringent Filter Design and Polarimetry Steven Tomczyk National Center for Atmospheric Research Boulder, Colorado – Nov 16, 2015

Birefringent Filter Design Relevant documents: COSMOLC-DE-7001 (Tunable Filter Design and Development) COSMO TN 22 Birefringent Filter Crystal Requirements

Birefringent Filter Requirements COSMO LC 1 degree FOV, 1.5m aperture Sets system étendue at 1.39 m2 deg2 Conservation of étendue - 100mm filter needs 15° full FOV Fabry-Perot won’t work over such steep angles Spectrograph requires too many slit positions Birefringent filter selected Spectral resolution set by need to resolve Stokes V signature

Optimal Tunable Filter Following Babcock (1953), S/N in magnetic measurement S N ∝ λ V λ,w F λ,Δλ,d dλ λ I λ,w +B F λ,Δλ,d dλ 1/2 w = line width Δλ = filter width d = displacement B = background Optimal Filter FeXIII 1074.7nm FWHM = 0.14 nm d = 0.1 nm

Filter Resolution Requirement Required resolution (dots) is about 8000 over the COSMO Filtergraph wavelength range

Wide-field Birefringent Filter For a wide-field birefringent filter, the wavelength shift is given by (Title and Rosenberg, 1979): Δλ λ =− 1 4 n o 2 n e − n o n e sin 2 θ= 1 𝑅 , Ω=4π sin 2 θ 2 sr , E=A Ω, E∙R= πA F , where F= 1 4 n o 2 n e − n o n e For COSMO we need E∙R ≥ 1.1∙104 m2deg2

Crystal Selection E∙R= πA F ≥ 1.1∙ 10 4 m 2 deg 2 Crystal no ne ne-no Diameter (mm) πA/F Length (mm) (m2deg2) MgF2 1.384 1.396 0.012 1.12E-03 120 1.04E+05 605 LiNbO3 2.286 2.203 -0.086 1.80E-03 100 4.49E+04 84 SiO2 (quartz) 1.543 1.552 0.009 6.09E-04 50 3.33E+04 807 KDP 1.494 1.46 -0.034 2.61E-03 99 3.04E+04 214 TeO2 2.26 2.142 -0.118 2.70E-03 7.51E+03 62 BaB2O4 1.658 1.584 -0.073 4.25E-03 4.77E+03 YVO4 1.993 2.215 0.222 6.31E-03 38 1.85E+03 33 CaCO3 (calcite) 1.656 1.485 -0.171 1.05E-02 40 1.23E+03 42 TiO2 (rutile) 2.583 2.865 0.282 3.69E-03 25 1.37E+03 26

Birefringent Filter Design Lithium Niobate (LN) Thickest elements 22 mm Super-achromatic waveplates (5 plastic elements) Tilted wire grid polarizers Electro-optically tuned

Birefringent Filter Design

Birefringent Filter Components 5 element, super-achromatic waveplate Transmission of filter is limited by polarizers - Meadowlark VL1 Predicted transmission 27% @ 1075 nm CoMP achieved 29%

Birefringent Filter Components Need crystals with uniformity of birefringence 44 crystals tested, 0.5 to 25 mm thick, 75 – 100 mm diameter Commercially available crystals are uniform enough (just)

Electro-optical Tuning Work led by Shibu K. Mathew (USO)

Electro-optical Tuning Single crystal shift, x2 for split element Need +/- 9kV at 1074nm, +/- 3kV at 530nm

Electro-optical Tuning Speed Tests limited by response of power supply Potential for very fast tuning

Polarimetry Noise scales inversely with polarimeter modulation efficiency (see del Toro Iniesta and Collados, 2000) Will use efficient 2-element polymer polychromatic modulator 𝜎 𝐼,𝑄,𝑈,𝑉 = 𝜎 𝜀 𝐼,𝑄,𝑈,𝑉 𝜎= 𝑁

Polarimetry Requirement: 1 G magnetic field in 900 s using FeXIII 1074 nm In weak field limit 𝑉=−𝑘 𝐵 𝐿𝑂𝑆 𝜕𝐼 𝜕𝜆 𝑉 𝐼 0 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =1.3⋅ 10 −4 𝐵 𝐿𝑂𝑆 (G)

Response matrix relates observed and actual Stokes vector Polarimetry Response matrix relates observed and actual Stokes vector 𝑋= 𝐼>𝐼 𝑄>𝐼 𝑈>𝐼 𝑉>𝐼 𝐼>𝑄 𝑄>𝑄 𝑈>𝑄 𝑉>𝑄 𝐼>𝑈 𝑄>𝑈 𝑈>𝑈 𝑉>𝑈 𝐼>𝑉 𝑄>𝑉 𝑈>𝑉 𝑉>𝑉 𝑆 𝑜𝑏𝑠 =𝑋 𝑆 𝑖𝑛 , ∆𝑋= − 𝑎/ 𝑝 𝐿 𝑎/ 𝑝 𝐿 𝑎/ 𝑝 𝐶 𝜀 𝑎 𝜀/ 𝑝 𝐿 𝜀/ 𝑝 𝐶 𝜀 𝜀/ 𝑝 𝐿 𝑎 𝜀/ 𝑝 𝐶 𝜀 𝜀/ 𝑝 𝐿 𝜀/ 𝑝 𝐿 𝑎 Following Ichimoto et al., 2008, we need to calibrate the response matrix elements to an accuracy of ε = 10-4 (to meet 1 G magnetic field error), a = 0.05 (following Ichimoto et al.), PL = maximum linear polarization = 0.1, PC = maximum circular polarization = 10-3 (corresponding to 10 G). ∆𝑋= − 0.50 0.50 50.0 10 −4 0.05 10 −3 0.10 10 −4 10 −3 0.05 0.10 10 −4 10 −3 10 −3 0.05

Polarimetry COSMO LC needs 10-4 precision in V/I, not accuracy V is anti-symmetric wrt line center, need amplitude to determine magnetic field (Lin, Kuhn, Coulter, 2004) Can calibrate I > Q,U,V using data itself, look in continuum where polarization is absent (e.g. Lites and Ichimoto, 2013) Adopted ∆𝑋= − 0.50 0.50 50.0 10 −3 0.05 10 −3 0.10 10 −3 10 −3 0.05 0.10 0.01 0.01 0.01 0.05

Calibration Insert calibration optics with known Mueller matrix References: Elmore, D.F., “A polarization calibration technique for the advanced stokes polarimeter”, 1990, NCAR Technical Note NCAR/TN-355+STR, NCAR, Boulder, Colorado. Ichimoto, et al., “Polarization Calibration of the Solar Optical Telescope onboard Hinode”, 2008, Solar Phys. 249, 233. Insert calibration optics with known Mueller matrix Polarizer Retarder Polarizer + Retarder Rotate them 𝑆 𝑜𝑏𝑠 =𝑋 𝑀 𝑐𝑎𝑙 𝑆 𝑖𝑛 ,

Calibration For COSMO LC, calibration optics cannot calibrate O1 But studies show O1 polarization should be very small This will be verified