The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,

Slides:



Advertisements
Similar presentations
,, Seismic Protection of Benchmark Cable-Stayed Bridge using Hybrid Control Strategy.
Advertisements

2002 Control of a Seismically Excited Cable-Stayed Bridge Employing a Hybrid Control Strategy ,
Finite element seismic analysis of a guyed mast
Optimal placement of MR dampers
Scissor-Jack-Damper System for Reduction of Stay Cable
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Konstantinos Agrafiotis
Department for ENGINEERING STRUCTURES Professor Vlado MICOV, Ph.D Head of Department.
NORM BASED APPROACHES FOR AUTOMATIC TUNING OF MODEL BASED PREDICTIVE CONTROL Pastora Vega, Mario Francisco, Eladio Sanz University of Salamanca – Spain.
Day 2. Lecturers: H.-J. Jung, H. Myung, KAIST, Korea Assistants: S.H. Park, D.D. Jang, KAIST, Korea Asia-Pacific Student Summer School on Smart Structures.
Solution of Eigenproblem of Non-Proportional Damping Systems by Lanczos Method In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics.
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Zheng Li PhD, Assistant Professor Department of Structural Engineering Tongji University Seismic Performance of Timber-Steel Hybrid Structures The Fifth.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Semi-active Management of Structures Subjected to High Frequency Ground Excitation C.M. Ewing, R.P. Dhakal, J.G. Chase and J.B. Mander 19 th ACMSM, Christchurch,
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Hong-Ki Jo 1), Man-Gi Ko 2) and * In-Won Lee 3) 1) Graduate Student, Dept. of Civil Engineering, KAIST 2) Professor, Dept. of Civil Engineering, Kongju.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
*Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee *Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee Structural Dynamics & Vibration Control Lab. Structural Dynamics.
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
Can tilt tests provide correct insight regarding frictional behavior of sandstone under seismic excitation? Can tilt tests provide correct insight regarding.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Advanced Science and Technology Letters Vol.32 (Architecture and Civil Engineering 2013), pp Development.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
1 Artificial Neural Networks for Structural Vibration Control Ju-Tae Kim: Graduate Student, KAIST, Korea Ju-Won Oh: Professor, Hannam University, Korea.
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
대한토목공학회 추계 학술발표회 대구 2003 년 10 월 24 일 T. X. Nguyen, 한국과학기술원 건설 및 환경공학과 박사과정 김병완, 한국과학기술원 건설 및 환경공학과 박사후연구원 정형조, 세종대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과.
* In-Won Lee 1), Sun-Kyu Park 2) and Hong-Ki Jo 3) 1) Professor, Department of Civil Engineering, KAIST 2) Professor, Department of Civil Engineering,
Speaker : Yunjeong Son Master’s Course, Hongik University
Probabilistic seismic hazard assessment for the pseudo-negative stiffness control of a steel base-isolated building: A comparative study with bilinear.
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
BASICS OF DYNAMICS AND ASEISMIC DESIGN
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Dynamic Analysis of Structures by
년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
Feasibility of Using Simple Adaptive Control Strategy for Dynamic Bridge Response Under Stiffness Variation. Rachel W. Soares, Luciana R. Barroso, Omar.
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Robust Hybrid Control System
Robust Hybrid Control System
Simplified Algebraic Method
A Survey on State Feedback AMD Control
a Bang-Bang Type Controller
Control of a Hybrid System using a -Synthesis Method
Presentation transcript:

The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Assistant Professor, Sejong Univ., Korea Woon-Hak Kim Woon-Hak Kim, Professor, Hankyong Nat. Univ., Korea In-Won Lee In-Won Lee, Professor, KAIST, Korea Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge

Structural Dynamics & Vibration Control Lab., KAIST, Korea 2 Introduction Robust hybrid control system Numerical examples Conclusions Contents

Structural Dynamics & Vibration Control Lab., KAIST, Korea 3 Introduction Hybrid control system (HCS)  A combination of passive and active control devices Passive devices: offer some degree of protection in the case of power failure Active devices: improve the control performances  However, the robustness of HCS could be decreased by the active control devices.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 4 Objective of this study Apply robust control algorithms to improve the controller robustness of HCS

Structural Dynamics & Vibration Control Lab., KAIST, Korea 5 Robust hybrid control system (RHCS) Control devices  Passive control devices Lead rubber bearings (LRBs) Design procedure: Ali and Abdel-Ghaffar (1995) Bouc-Wen model  Active control devices Hydraulic actuators (HAs) An actuator has a capacity of 1000 kN. The actuator dynamics are neglected.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 6 Control algorithm  RHCS I Primary control scheme · Linear quadratic Gaussian (LQG) algorithm Secondary control scheme · On-off type controller according to LRB’s responses

Structural Dynamics & Vibration Control Lab., KAIST, Korea 7 Bridge Model Sensor LQG On-Off HA LRB MUX Block diagram of RHCS I

Structural Dynamics & Vibration Control Lab., KAIST, Korea 8  RHCS II H 2 control algorithm with frequency weighting filters Frequency weighting filters

Structural Dynamics & Vibration Control Lab., KAIST, Korea 9 Bridge Model Sensor H2H2 HA LRB MUX Block diagram of RHCS II DM WgWg kgkg R WuWu WzWz Q K

Structural Dynamics & Vibration Control Lab., KAIST, Korea 10  RHCS III H  control algorithm with frequency weighting filters

Structural Dynamics & Vibration Control Lab., KAIST, Korea 11 Numerical examples Analysis model  Bridge model Bill Emerson Memorial Bridge · Benchmark control problem (Dyke et al., 2003) · Located in Cape Girardeau, MO, USA · 16 shock transmission devices (STDs) are employed between the tower-deck connections.

Structural Dynamics & Vibration Control Lab., KAIST, Korea m350.6 m m Schematic of the Bill Emerson Memorial Bridge

Structural Dynamics & Vibration Control Lab., KAIST, Korea m350.6 m m Configuration of sensors : Accelerometer : Displacement sensor

Structural Dynamics & Vibration Control Lab., KAIST, Korea m350.6 m m Configuration of control devices (HAs+LRBs)

Structural Dynamics & Vibration Control Lab., KAIST, Korea 15 PGA: 0.348g  Historical earthquake excitations

Structural Dynamics & Vibration Control Lab., KAIST, Korea 16 PGA: 0.348g PGA: 0.143g  Historical earthquake excitations

Structural Dynamics & Vibration Control Lab., KAIST, Korea 17 PGA: 0.348g PGA: 0.143g PGA: 0.265g  Historical earthquake excitations

Structural Dynamics & Vibration Control Lab., KAIST, Korea 18 J 1 /J 7 : Peak/Normed base shear J 2 /J 8 : Peak/Normed shear at deck level J 3 /J 9 : Peak/Normed overturning moment J 4 /J 10 : Peak/Normed moment at deck level J 5 /J 11 : Peak/Normed cable tension deviation J 6 : Peak Deck dis. at abutment  Evaluation criteria

Structural Dynamics & Vibration Control Lab., KAIST, Korea 19 Analysis results  Control performances Displacement under El Centro earthquake (a) Uncontrolled(b) RHCS III

Structural Dynamics & Vibration Control Lab., KAIST, Korea 20 Cable tension under El Centro earthquake (a) Uncontrolled(b) RHCS III

Structural Dynamics & Vibration Control Lab., KAIST, Korea 21 Shear force under El Centro earthquake (a) Uncontrolled(b) RHCS III

Structural Dynamics & Vibration Control Lab., KAIST, Korea 22 Evaluation criteria CHCS * RHCS IRHCS IIRHCS III J 1. Max. base shear J 2. Max. deck shear J 3. Max. base moment J 4. Max. deck moment J 5. Max. cable deviation J 6. Max. deck dis J 7. Norm base shear J 8. Norm deck shear J 9. Norm base moment J 10. Norm deck moment J 11. Norm cable deviation1.707e e e e-2 Maximum evaluation criteria for all three earthquakes * Conventional HCS controlled by LQG algorithm

Structural Dynamics & Vibration Control Lab., KAIST, Korea 23 Evaluation criteria CHCS * RHCS IRHCS IIRHCS III J 1. Max. base shear J 2. Max. deck shear J 3. Max. base moment J 4. Max. deck moment J 5. Max. cable deviation J 6. Max. deck dis J 7. Norm base shear J 8. Norm deck shear J 9. Norm base moment J 10. Norm deck moment J 11. Norm cable deviation1.707e e e e-2 Maximum evaluation criteria for all three earthquakes * Conventional HCS controlled by LQG algorithm

Structural Dynamics & Vibration Control Lab., KAIST, Korea 24  Controller robustness The dynamic characteristic of as-built bridge is not identical to the numerical model. To verify the applicability of RHCS, the controller robustness is investigated to perturbation of stiffness parameter. where: nominal stiffness matrix : perturbed stiffness matrix : perturbation amount (  5% ~  20 %)

Structural Dynamics & Vibration Control Lab., KAIST, Korea 25 Maximum variations of evaluation criteria for all three earthquakes (%,  5% perturbation) Evaluation criteria RHCS IRHCS IIRHCS III J 1. Max. base shear J 2. Max. deck shear J 3. Max. base moment J 4. Max. deck moment J 5. Max. cable deviation J 6. Max. deck dis J 7. Norm base shear J 8. Norm deck shear J 9. Norm base moment J 10. Norm deck moment J 11. Norm cable deviation

Structural Dynamics & Vibration Control Lab., KAIST, Korea 26 Maximum variations of evaluation criteria for all three earthquakes (%,  20% perturbation) Evaluation criteria RHCS IIRHCS III J 1. Max. base shear J 2. Max. deck shear J 3. Max. base moment J 4. Max. deck moment J 5. Max. cable deviation J 6. Max. deck dis J 7. Norm base shear J 8. Norm deck shear J 9. Norm base moment J 10. Norm deck moment J 11. Norm cable deviation

Structural Dynamics & Vibration Control Lab., KAIST, Korea 27 Max. variation of evaluation criteria for variations of stiffness perturbation

Structural Dynamics & Vibration Control Lab., KAIST, Korea 28 Conclusions Hybrid control system with robust control algorithms  Has excellent robustness for stiffness perturbation without loss of control performances RHCS I obtains robustness only for  5% stiffness perturbations. RHCS III is more robust than RHCS II.  Robust hybrid control system could effectively be used to seismically excited cable-stayed bridge.

Structural Dynamics & Vibration Control Lab., KAIST, Korea 29 This research is supported by the National Research Laboratory (NRL) program from the Ministry of Science of Technology (MOST) and the Grant for Pre-Doctoral Students from the Korea Research Foundation (KRF) in Korea. Thank you for your attention! Acknowledgements