ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G.

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Cristina PUZZARINI Dip. di Chimica “G. Ciamician”, Università di Bologna QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS for ROTATIONAL SPECTROSCOPY:
E QUILIBRIUM S TRUCTURE OF THE S IMPLE S KEW C HAIN M OLECULE HSOH 61 th International Symposium on Molecular Spectroscopy, Ohio June, Oliver.
Quantum Computing with Trapped Ion Hyperfine Qubits.
Millimeter-wave Spectroscopy of the Tunneling-rotation Transitions of the D 2 CCD radical M. Ohtsuki, M. Hayashi, K. Harada, K. Tanaka Department of Chemistry,
Lecture 37 Nuclear magnetic resonance. Nuclear magnetic resonance The use of NMR in chemical research was pioneered by Herbert S. Gutowski of Department.
Electron Paramagnetic Resonance spectrometer
Electron Spin Resonance Spectroscopy
Spectroscopic Analysis Part 4 – Molecular Energy Levels and IR Spectroscopy Chulalongkorn University, Bangkok, Thailand January 2012 Dr Ron Beckett Water.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
65th OSU International Symposium on Molecular Spectroscopy RH14.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene: [1,6]-naphthyridine. Sébastien Gruet, Manuel Goubet, Olivier.
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
1 The Structure and Ring Puckering Barrier of Cyclobutane: A Theoretical Study Sotiris S. Xantheas, Thomas A. Blake Environmental Molecular Sciences Laboratory.
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
High-accuracy ab initio calculation of metal quadrupole-coupling parameter Lan Cheng, John Stanton, and Jürgen Gauss Department of Chemistry, University.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Submillimeter-wave lines of H 2 D + and D 2 H + as probes into chemistry in cold dark clouds T. Amano Institute for Astrophysics and Planetary Sciences.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
Synchrotron-Based High Resolution Spectroscopy of N-Bearing PAHs Sébastien Gruet, Olivier Pirali, Manuel Goubet and P. Bréchignac ISMS /06/2014.
SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.
Relativistic effects in ADF Erik van Lenthe, SCM.
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
DIMETHYL -ETHER THREE DIMENTIONAL SPECTRA M. VILLA U.A.M.-I. (México) and M. L. SENENT C.S.I.C. (Spain)
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.
Perturbations and vibrational energies in acrylonitrile from global analysis of its mm-wave to THz rotational spectrum Zbigniew Kisiel, a Lech Pszczółkowski,
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
Protein in solution Radio waves 1 H 800 MHz 13 C 200 MHz 15 N 80 MHz Spectra Principles of NMR Protein Spectroscopy B o T Frequencies and Spectra.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
Theoretical and Computational Chemistry Group, Scuola Normale Superiore, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Pisa, ITALY Vincenzo.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Copyright All rights reserved. June 25, 2015ISMS, 2015
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN the Dissociation Limit. Millimeter-Wave Spectroscopy of the vdW Bands of He- HCN Above the Dissociation.
K. Iwakuni, H. Sera, M. Abe, and H. Sasada Department of Physics, faculty of Science and Technology, Keio University, Japan 1 70 th. International Symposium.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
A Joint Theoretical and Experimental Study of the SiO 2 H 2 Isomeric System Michael C. McCarthy Harvard-Smithsonian Center for Astrophysics Jürgen Gauss.
The Rotational Spectrum and Hyperfine Constants of Arsenic Monophosphide, AsP Flora Leung, Stephen A. Cooke and Michael C. L. Gerry Department of Chemistry,
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Laboratory of Millimetre-wave Spectroscopy of Bologna LABORATORY MEASUREMENTS in SUPPORT of ASTRONOMICAL OBSERVATIONS: ROTATIONAL SPECTROSCOPY up to the.
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
FAR-IR ACTION SPECTROSCOPY OF AMINOPHENOL AND ETHYLVANILLIN: EXPERIMENT AND THEORY Vasyl Yatsyna, Daniël Bakker*, Raimund Feifel, Vitali Zhaunerchyk, Anouk.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
The gerade Rydberg states of molecular hydrogen Daniel Sprecher, 1 Christian Jungen, 2 and Frédéric Merkt 1 1 Laboratory of Physical Chemistry, ETH Zurich,
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Torsion-mediated spin-rotation hyperfine splittings in methanol (at moderate to high J values) Li-Hong Xu – University of New Brunswick 2 expt labs: NNOV.
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Theoretical Prediction of the Rotational Constants for
New Measurements of the Hyperfine Interactions and Dipole Moment of KI
Threshold Ionization and Spin-Orbit Coupling of CeO
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
Holger S. P. Müller, J. C. Pearson, S. Brünken, S. Yu,
Presentation transcript:

ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di Bologna Michael E. HARDING and Jürgen GAUSS Institut für Physikalische Chemie, University of Mainz Columbus — June 26, 2009

1) Experiment: Instrument & Technique Instrument & Technique

FREQUENCY RANGE LMSB (2) GHz (from fundamental to the 6th harmonic) GHz (8th harmonic) GHz (8th harmonic) (3) THz (9th harmonic) THz (12th harmonic) THz (12th harmonic) (1) GHz (wave-guide Stark cell – P band)

MILLIMETER-WAVE EXPERIMENTAL SET-UP (2) BLOCK DIAGRAM OF THE GHz SPECTROMETER SYNTH 10 kHz-1 GHz MULT fSfS nfSnfS MIX MULT SYNCR ref: 20 MHz RF OSCILL GHz f RF 20 MHz 90 MHz |f G - mf RF | GUNN P. SUPPLY and SYNCR ref: 73 MHz |f RF - nf S | HP8642A SYNTH MIX corr fGfG fGfG MULTIPLIER InSb DETECTOR PREAMPL LOCK - IN 10 MHz freq. standard kHz ref GUNN DIODES THERMOSTAT or liquid N 2 system

Measurements: Lamb-dip technique Corner cube mirror Cell InSb detector Polarizer Frequency modulated source Scheme of the radiation path Using free-space cell G. Cazzoli & L. Dore, J. Mol. Spectrosc. 143, 231 (1990).

1) Partial saturation 2) Only Doppler profile 3) Rad: back and forward Measurements: Lamb-dip technique + v za - v za vz= 0vz= 0vz= 0vz= 0

 ( ) Lamb-dip effect

Measurements: Lamb-dip technique CH 2 BrF Doppler Lamb-dip the Lamb-dip technique allows 1) To well resolve hfs ( /  = 3.9x10 7,  =16 kHz) 2) To accurately determine - frequencies - frequencies - hfs parameters - hfs parameters

GHOST TRANSITIONS

2) Theory: Computational details & Computational details & requirements requirements

Parameters of Rotational Spectroscopy Effective Hamiltonian: determination of H Rot via quantum chemistry Rotational Hamiltonian Rotational constants Nuclear quadrupole coupling constants Spin-rotation interactions Spin-spin (direct) interactions interactions

Quantum-Chemical Calculation of Spectroscopic Parameters Nuclear quadrupole coupling Nuclear quadrupole coupling first-order property: requires first derivatives of energy Spin-rotation interaction Spin-rotation interaction second-order property: requires second derivatives of energy ELECTRIC FIELD GRADIENT

requires equilibrium geometry: no „electronic property“ addditional contribution due to:  indirect spin-spin coupling (usually negligible) Quantum-Chemical Calculation of Spectroscopic Parameters Spin-spin coupling Spin-spin coupling DIPOLAR SPIN-SPIN COUPLING TENSOR  vibrational corrections (anharmonic force field)

Beyond the Rigid-Rotator Approximation COUPLING of ROTATIONAL and VIBRATIONAL MOTION  Vibrational corrections to properties: PERTURBATION THEORY starting from the rigid-rotator harmonic oscillator approximation the rigid-rotator harmonic oscillator approximation Vibrational corrections require: anharmonic force field calculations anharmonic force field calculations

Accurate hyperfine parameters >>>> Main requirements : - accurate method - cc basis set - CV corrections

Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n  Q] - CV corrections [additivity/CV bases]

Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n  Q] - CV corrections [additivity/CV bases] - vibrational corrections

Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n  Q] - CV corrections [additivity/CV bases] - vibrational corrections [ff: -correlated method method -basis: n  T] -basis: n  T]

3) Results 3) Results

Lamb-dip spectra recorded Hyperfine parameters computed Spectra analysis & assignment

Para lines Para lines (I H,tot = 0) hfs: only 17 O

Hyperfine parameters ………. 17 O: -nuclear quadrupole coupling -spin-rotation H: H: —

Ortho lines Ortho lines (I H,tot = 1) hfs: 17 O + H

Hyperfine parameters ………. 17 O: -nuclear quadrupole coupling -spin-rotation -spin-spin ( 17 O-H) H: H: -spin-rotation -spin-spin (H-H)

J = 1 1,0 – 1 0,1

17 O ExperimentTheory C aa (11) C bb (81) C cc (54) Results ……. results in kHz

Method:CCSD(T)Equil. (exp r e ) Vib. Corr. (VPT2) (DVR)Total(Eq+Vib) basis basisaugCV6ZaugCV5ZaugCV5Z C aa C aa C bb C bb C cc C cc

„Experimental“ Determination of Absolute Shieldings measure rotational spectrum extract nuclear spin-rotation constant subtract rovibrational corrections convert to paramagnetic shielding add calculated diamagnetic shielding add rovibrational corrections consider temperature effects  experiment  C v,J  C e  σ e para  σ e dia  σ v,J  σ(T)

Results …… Absolute 17 O NMR scale [ppm] [ppm]isotropic  (dia) calculated  (para) from exp  (equil)  (vib)  (T) (3)  (300K) 326.2(3) Best theoretical estimate ppm

Results …… the other hf parameters [MHz/kHz] [MHz/kHz]ExperimentTheory 1.5  aa ( 17 O) (25) MHz MHz (  bb -  cc )/4 ( 17 O) (52) MHz MHz 1.5D aa ( 17 O-H) 23.44(43) kHz kHz (D bb -D cc )/4 ( 17 O-H) 5.182(97) 5.11 kHz 5.11 kHz 1.5D aa (H-H) (25) kHz C aa (H) (30) kHz kHz C bb (H) (25) kHz kHz C cc (H) (12) kHz kHz

Calculations performed using C FOUR : THANK YOU for your attention!! THANK YOU for your attention!!

NMRMW Bryce & Wasylishen, Acc. Chem. Res. 36, 327 (2003) connection nuclear magnetic shielding  absolute shielding scales Ramsey-Flygareequations form of Hamiltonians: coupling mechanism vs tensor rank nuclear quadrupole coupling  nuclear quadrupole coupling C Q nuclearspin-rotationCchemicalshift tensor spin-spin coupling (rank 2) C 3 scalar spin-spin coupling (rank 0) C 4 direct dipolar couplingD indirect spin-spin couplingJ

Frerking, Langer, J. Chem. Phys. 74, 6990 (1981) Radioastronomical study (Bok globule B335) Absolute 17 O NMR Scale OLD

C( 17 O)-30.4(12)  C(vib) -0.1  (para) (172)  (dia)  (eq) -38.7(172)  (vib)  (T)  (300K) -44.8(172) Wasylishen et al., JCP 84, 1057 (1984); Sundholm, Gauss, Schäfer JCP 105, (1996) Best theoretical estimate ppm OLD

Cazzoli, Dore, Puzzarini, Beninati, Phys. Chem. Chem. Phys. 4, 3575 (2002) New laboratory study using Lamb-dip technique Absolute 17 O NMR Scale NEW

C( 17 O)-30.4(12)-31.61(4)  C(vib) -0.1  (para) (172)-501.8(6)  (dia)  (eq) -38.7(172)-56.7(6)  (vib)  (T)  (300K) -44.8(172)-62.7(6) Wasylishen et al., JCP 84, 1057 (1984); Sundholm, Gauss, Schäfer JCP 105, (1996) Best theoretical estimate ppm OLDNEW