PHYS 1441 – Section 002 Lecture #13 Monday, March 4, 2013 Dr. Jaehoon Yu Newton’s Law of Universal Gravitation Motion in Resistive Force Work done by a.

Slides:



Advertisements
Similar presentations
The Beginning of Modern Astronomy
Advertisements

Monday, June 23, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Monday, June 23, 2014 Dr. Jaehoon Yu Newton’s Law.
Wednesday, Feb. 25, 2009 PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #8 Wednesday, Feb. 25, 2009 Dr. Jaehoon Yu Newton’s.
System consisting of three stars: Alpha Centauri A, Alpha Centauri B, and Proxima Centauri Alpha Centauri A and B (depicted at left) form a binary star.
Circular Motion Level 1 Physics. What you need to know Objectives Explain the characteristics of uniform circular motion Derive the equation for centripetal.
Thursday, June 19, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #10 Thursday, June 19, 2014 Dr. Jaehoon Yu Uniform Circular.
Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Oct. 20, 2010 Dr. Jaehoon Yu Motion in.
Tuesday, Sept. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #11 Tuesday, Sept. 30, 2014 Dr. Jaehoon Yu Newton’s Law.
Objectives Solve orbital motion problems. Relate weightlessness to objects in free fall. Describe gravitational fields. Compare views on gravitation.
Monday, Nov. 25, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 25, 2002 Dr. Jaehoon Yu 1.Simple Harmonic.
Thursday, June 16, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Thursday, June 16, 2011 Dr. Jaehoon Yu Motion Under.
Tuesday, June 30, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Tuesday, June 30, 2015 Dr. Jaehoon Yu Newton’s Law.
C H A P T E R 4 Forces and Newton's Laws of Motion
Newton’s Law of Gravitation. Newton concluded that gravity was a force that acts through even great distances Newton did calculations on the a r of the.
Thursday, June 19, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #10 Thursday, June 19, 2014 Dr. Jaehoon Yu Uniform Circular.
Universal Law of Gravity. Newton’s Universal Law of Gravitation Between every two objects there is an attractive force, the magnitude of which is directly.
Wednesday, June 24, 2015 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 24, 2015 Dr. Jaehoon Yu Newton’s.
Monday, Oct. 4, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Law of Universal Gravitation 2.Kepler’s Laws 3.Motion in Accelerated Frames PHYS.
PHYS 1441 – Section 002 Lecture #15 Monday, March 18, 2013 Dr. Jaehoon Yu Work with friction Potential Energy Gravitational Potential Energy Elastic Potential.
Wednesday, June 18, 2014 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 18, 2014 Dr. Jaehoon Yu Newton’s.
PHYS 1441 – Section 002 Lecture #9 Monday, Feb. 18, 2013 Dr. Jaehoon Yu Free Body Diagram Newton’s Third Law Categories of forces.
Monday, Oct. 6, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #11 Newton’s Law of Gravitation Kepler’s Laws Work Done by.
Monday, June 29, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #10 Monday, June 29, 2015 Dr. Jaehoon Yu Centripetal Acceleration.
PHYS 1441 – Section 002 Lecture #8 Monday, Feb. 11, 2013 Dr. Jaehoon Yu Maximum Range and Height What is the Force? Newton’s Second Law Free Body Diagram.
Wednesday, Mar. 5, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Mar. 5, 2008 Dr. Jaehoon Yu Static and.
Monday, June 22, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 22, 2015 Dr. Jaehoon Yu Newton’s Second.
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
Law of universal Gravitation Section The force of gravity: All objects accelerate towards the earth. Thus the earth exerts a force on these.
Monday, Oct. 25, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #14 Monday, Oct. 25, 2010 Dr. Jaehoon Yu Work – Kinetic.
Wednesday, June 7, 2006PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 7, 2006 Dr. Jaehoon Yu Application.
Monday, Feb. 16, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #8 Monday, Feb. 16, 2004 Dr. Jaehoon Yu Chapter four:
Wednesday, June 6, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 6, 2007 Dr. Jaehoon Yu Reference.
Monday, Oct. 8, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #10 Monday, Oct. 8, 2007 Dr. Jaehoon Yu Uniform and Non-uniform.
Wednesday, Mar. 12, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #15 Wednesday, Mar. 12, 2008 Dr. Jaehoon Yu Work done.
Spring 2002 Lecture #21 Dr. Jaehoon Yu 1.Kepler’s Laws 2.The Law of Gravity & The Motion of Planets 3.The Gravitational Field 4.Gravitational.
Monday, Oct. 12, 2009PHYS , Fall 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #12 Monday, Oct. 12, 2009 Dr. Mark Sosebee (Disguised as.
Monday, June 9, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Monday, June 9, 2008 Dr. Jaehoon Yu Exam problem solving.
Monday, Mar. 3, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #12 Monday, Mar. 3, 2008 Dr. Jaehoon Yu Types of Forces.
C H A P T E R 4 Forces and Newton's Laws of Motion
Monday, Mar. 10, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #14 Monday, Mar. 10, 2008 Dr. Jaehoon Yu Uniform Circular.
Wednesday, Oct. 20, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Linear Momentum 2.Linear Momentum and Forces 3.Conservation of Momentum 4.Impulse and.
Wednesday, Sept. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Forces of Friction 2.Uniform and Non-uniform Circular Motions 3.Resistive Forces and.
Wednesday, Oct. 2, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #6 Wednesday, Oct. 2, 2002 Dr. Jaehoon Yu 1.Newton’s laws.
Wednesday, Oct. 10, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #11 Wednesday, Oct. 10, 2007 Dr. Jaehoon Yu Free Fall.
PHYS 1443 – Section 001 Lecture #8 Wednesday, February 23, 2011 Dr. Jaehoon Yu Application of Newton’s Laws –Motion with friction Uniform Circular Motion.
Tuesday, June 10, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Tuesday, June 10, 2008 Dr. Jaehoon Yu Uniform Circular.
Wednesday, Sept. 24, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #9 Forces of Friction Uniform and Non-uniform Circular.
Monday, Sept. 29, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #8 Monday, Sept. 29, 2008 Dr. Jaehoon Yu Newton’s Laws.
Monday, Mar. 30, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #14 Monay, Mar. 30, 2009 Dr. Jaehoon Yu Work-Kinetic Energy.
PHYS 1441 – Section 002 Lecture #14 Wednesday, March 6, 2013 Dr. Jaehoon Yu Work done by a constant force Scalar Product of the Vector Work with friction.
PHYS 1441 – Section 001 Lecture #10
PHYS 1443 – Section 001 Lecture #10
PHYS 1441 – Section 002 Lecture #13
PHYS 1441 – Section 002 Lecture #17
Section 2 Newton’s Law of Universal Gravitation
PHYS 1441 – Section 001 Lecture #6
PHYS 1441 – Section 002 Lecture #12
Isaac Newton ( ) Newton’s Laws of Motion
PHYS 1443 – Section 001 Lecture #9
PHYS 1443 – Section 003 Lecture #11
PHYS 1441 – Section 001 Lecture # 9
PHYS 1443 – Section 003 Lecture #11
PHYS 1441 – Section 001 Lecture #8
Universal Gravitation
PHYS 1441 – Section 001 Lecture #6
PHYS 1443 – Section 003 Lecture #10
PHYS 1443 – Section 002 Lecture #10
PHYS 1443 – Section 001 Lecture #8
PHYS 1443 – Section 003 Lecture #20
PHYS 1443 – Section 001 Lecture #10
Presentation transcript:

PHYS 1441 – Section 002 Lecture #13 Monday, March 4, 2013 Dr. Jaehoon Yu Newton’s Law of Universal Gravitation Motion in Resistive Force Work done by a constant force

Announcements Quiz 3 Results –Class average: 21/40 Equivalent to 52.5/100 Previous scores: 65/100 and 60/100 –Top score: 39/40 Midterm comprehensive exam –Wednesday, Mar. 20 –In SH103 –Covers CH1.1 through what we learn this Wednesday –Will prepare a 150 problem mid-term preparation set for you Will distribute in class this Wednesday Spring break next week –No class during the week! Monday, Mar. 4, PHYS , Spring 2013 Dr. Jaehoon Yu

Wednesday, Oct. 20, 2010PHYS , Fall 2010 Dr. Jaehoon Yu Special Project #4 Using the fact that g=9.80m/s 2 on the Earth’s surface, find the average density of the Earth. –Use the following information only but without computing the volume explicitly The gravitational constant The radius of the Earth 20 point extra credit Due: Monday, Mar. 25 You must show your OWN, detailed work to obtain any credit!! 3

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Newton’s Law of Universal Gravitation People have been very curious about the stars in the sky, making observations for a long~ time. The data people collected, however, have not been explained until Newton has discovered the law of gravitation. Every object in the Universe attracts every other object with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. How would you write this law mathematically? G is the universal gravitational constant, and its value is This constant is not given by the theory but must be measured by experiments. With G Unit? This form of forces is known as the inverse-square law, because the magnitude of the force is inversely proportional to the square of the distances between the objects. 4

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Ex. Gravitational Attraction What is the magnitude of the gravitational force that acts on each particle in the figure, assuming m 1 =12kg, m 2 =25kg, and r=1.2m? 5

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Why does the Moon orbit the Earth? 6

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Gravitational Force and Weight Since weight depends on the magnitude of gravitational acceleration, g, it varies depending on geographical location. The attractive force exerted on an object by the Earth Gravitational Force, FgFg Weight of an object with mass M is By measuring the forces one can determine masses. This is why you can measure mass using the spring scale. What is the SI unit of weight? N 7

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Gravitational Acceleration What is the SI unit of g? m/s 2 Gravitational acceleration at distance r from the center of the earth! 8

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Gravitational force on the surface of the earth: Magnitude of the gravitational acceleration on the surface of the Earth 9

Monday, Mar. 4, 2013 Example for Universal Gravitation Using the fact that g=9.80m/s 2 on the Earth’s surface, find the average density of the Earth. Since the gravitational acceleration is Therefore the density of the Earth is Solving for MEME Solving for g PHYS , Spring 2013 Dr. Jaehoon Yu 10

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu There is only one speed that a satellite can have if the satellite is to remain in an orbit with a fixed radius. Satellite in Circular Orbits What acts as the centripetal force? The gravitational force of the earth pulling the satellite! 11

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Determine the speed of the Hubble Space Telescope orbiting at a height of 598 km above the earth’s surface. Ex. Orbital Speed of the Hubble Space Telescope 12

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Period of a Satellite in an Orbit Speed of a satellite Period of a satellite Square either side and solve for T2 This is applicable to any satellite or even for planets and moons. Kepler’s 3 rd Law 13

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu Geo-synchronous Satellites What period should these satellites have? Satellite TV Global Positioning System (GPS) The same as the earth!! 24 hours 14

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu In each case, what is the weight recorded by the scale? Ex. Apparent Weightlessness and Free Fall

Monday, Mar. 4, 2013PHYS , Spring 2013 Dr. Jaehoon Yu At what speed must the surface of the space station move so that the astronaut experiences a push on his feet equal to his weight on earth? The radius is 1700 m. Ex. Artificial Gravity 16

Monday, Mar. 4, 2013 Motion in Resistive Forces Medium can exert resistive forces on an object moving through it due to viscosity or other types frictional properties of the medium. These forces are exerted on moving objects in opposite direction of the movement. Some examples? These forces are proportional to such factors as speed. They almost always increase with increasing speed. Two different cases of proportionality: 1.Forces linearly proportional to speed: Slowly moving or very small objects 2.Forces proportional to square of speed: Large objects w/ reasonable speed Air resistance, viscous force of liquid, etc PHYS , Spring 2013 Dr. Jaehoon Yu 17