Donor-Acceptor Complexes in ZnO

Slides:



Advertisements
Similar presentations
Site preferences of indium impurity atoms in intermetallics having Al 3 Ti and Al 3 Zr crystal structures John P. Bevington, Farida Selim and Gary S. Collins.
Advertisements

First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
REACTIONS OF INTERSTITIAL CARBON WITH BACKGROUND IMPURITIES IN N- AND P-TYPE SILICON STRUCTURES L.F. Makarenko*, L.I. Murin**, M. Moll***, F.P. Korshunov**,
The silicon substrate and adding to it—Part 1  Explain how single crystalline Si wafers are made  Describe the crystalline structure of Si  Find the.
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Section 4: Diffusion part 2
12/03/ ZnO (Zinc oxide) by Alexander Glavtchev.
1Ruđer Bošković Institute, Zagreb, Croatia
A photoluminescence study of Cd, In and Sn in ZnO using radioisotopes Joseph Cullen, Martin Henry, Enda McGlynn Dublin City University Karl Johnston Universitat.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
KINETICS OF INTERSTITIAL CARBON ANNEALING AND MONITORING OF OXYGEN DISTRIBUTION IN SILICON PARTICLE DETECTORS L.F. Makarenko*, M. Moll**, F.P. Korshunov***,
Cardona Symposium A Tale of Two Vacancies Peter Y. Yu Department of Physics, University of California & Materials Science Division, Lawrence Berkeley.
Semiconductor Equilibrium
Ion implantation doping of perovskites and related oxides Ulrich Wahl Instituto Tecnológico e Nuclear (ITN), Sacavém, Portugal Collaborators: João Guilherme.
Depth Profiling with Low-Energy Nuclear Resonances H.-W. Becker, IAEA May 2011 CRP: Reference Database for Particle Induced Gamma-ray Emission (PIGE) Ruhr-University.
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
Photoacoustic Spectroscopy of Surface Defects States of Semiconductor Samples 1) M.Maliński, 2) J.Zakrzewski, 2) F.Firszt 1) Department of Electronics.
High-lights of solid state physics at ISOLDE Instituto Tecnológico e Nuclear, Sacavém, Portugal and Centro de Física Nuclear da Universidade de Lisboa,
Modeling Complex Diffusion Mechanisms in L1 2 -Structured Compounds Matthew O. Zacate William E. Evenson Mike Lape Michael Stufflebeam Supported by NSF.
Juliana Marques Ramos 1,2 German Thesis Advisor: Reiner Vianden 2, Brazilian Thesis Advisor: Artur Wilson Carbonari 1 Collaborators: João Guilherme Martins.
SILICON DETECTORS PART I Characteristics on semiconductors.
Applications of Mössbauer Spectroscopy at WITS and ISOLDE/CERN by Professor Deena Naidoo Wits-NECSA Workshop September 2015.
APPLICATIONS OF THERMOACOUSTIC TECHNIQUES FOR THERMAL, OPTICAL AND MECHANICAL CHARACTERIZATION OF MATERIALS, STRUCTURES AND DEVICES Mirosław Maliński.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #3. Diffusion  Introduction  Diffusion Process  Diffusion Mechanisms  Why Diffusion?  Diffusion Technology.
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
FZU Comparison of Mn doped GaAs, ZnSe, and LiZnAs dilute magnetic semiconductors J.Mašek, J. Kudrnovský, F. Máca, and T. Jungwirth.
Ultrafast carrier dynamics Optical Pump - THz Probe Ultrafast carrier dynamics in Br + -bombarded semiconductors investigated by Optical Pump - THz Probe.
Performances of epitaxial GaAs detectors E. Bréelle, H. Samic, G. C. Sun, J. C. Bourgoin Laboratoire des Milieux Désordonnés et Hétérogènes Université.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
UNIVERSITÄT DES SAARLANDES 1 Introduction to solid state physics at ISOLDE Th. Wichert (Universität des Saarlandes) Nuclear Physics & Astrophysics at CERN.
INTERSTITIAL DEFECT REACTIONS IN P-TYPE SILICON IRRADIATED AT DIFFERENT TEMPERATURES L.F. Makarenko*, S.B. Lastovski**, L.I. Murin**, M. Moll*** * Belarusian.
Northwestern University Selected ZnO Properties - Molecular mass Specific gravity at room temp g/cm3 - Point group 6mm (Wurtzite)
Burnaby - Dublin - Freiberg – Manchester – Saarbrücken - ISOLDE Collaboration Spokesperson: M. Deicher Contact person: K. Johnston.
Perturbed Angular Correlation studies of Hg coordination mechanisms on functionalized magnetic nanoparticles P. Figueira, M. Silva Martins, A. L. Daniel-da-Silva,
. SEMICONDUCTORS Silicon bond model: Electrons and holes;
Semiconductors with Lattice Defects
Diffusion in Intermetallic Compounds
Study of molybdenum oxide by means of perturbed angular correlations and mößbauer spectroscopy Juliana Schell 1,2 João Guilherme Martins Correia 1,3, Katharina.
PAC study of the magnetic and structural first-order phase transition in MnAs J. N. Gonçalves 1 V. S. Amaral 1, J. G. Correia 2, A. M. L. Lopes 3 H. Haas.
Neutron Transmutation Doping Conceptual Design Dr. Mosa Othman Silicon doping facility manger Egyptian Second Research Raector (ETRR-2) Atomic Energy Authority.
Origin of unusual Ag diffusion profiles in CdTe 1 J. Lehnert, M. Deicher, K. Johnston, Th. Wichert, H. Wolf Experimentalphysik, Universität des Saarlandes,
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
Lattice location studies of the “anti-site” impurities As and Sb in ZnO and GaN Motivation 73 As in ZnO 73 As in GaN 124 Sb in GaN Conclusions U. Wahl.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
II-VI Semiconductor Materials, Devices, and Applications
1) Instituto Tecnológico e Nuclear, Sacavém, Portugal 2) Centro de Física Nuclear da Universidade de Lisboa, Portugal 3) II. Physikalisches Institut, Universität.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics Spokepersons: Haraldur Páll Gunnlaugsson Sveinn Ólafsson Contact person:
Computational Physics (Lecture 24) PHY4370. DFT calculations in action: Strain Tuned Doping and Defects.
N. A. Stolwijk, M. Wegner, F. Hergemöller, S. Divinski, G. Wilde
New Tilted-Foils Plus beta-NMR Setup at REX-ISOLDE
“Semiconductor Physics”
Hyperfine Interactions in Palladium Foils during Deuterium/Hydrogen Electrochemical Loading   Jinghao He1, Graham K. Hubler1, Eric Bernardo da Silva2,
HiROYUKI SERIZAWA JaPAN Atomic Energy Agency Principle Researcher
Emission Mössbauer Spectroscopy at ISOLDE/CERN
Mössbauer studies of dilute magnetic semiconductors
The problem Experimentally available: nQ = eQVzz/h
Ion beam analysis of materials with MeV beams at the Ruhr University Bochum Ruhr-Uni-Bochum Contribution to the ISOLDE workshop, Dec, 4th 2017, Hans-Werner.
Lecture #5 OUTLINE Intrinsic Fermi level Determination of EF
Read: Chapter 2 (Section 2.3)
Basic Semiconductor Physics
Effect of Cryogenic Temperature Deposition of Various Metal Contacts to Bulk, Single-Crystal n-type ZnO J. Wright1, L. Stafford1, B.P. Gila1, D.P. Norton1,
반도체 기초 이론 Vol. I Semiconductor Fundamentals by R. F
EE105 Fall 2007Lecture 1, Slide 1 Lecture 1 OUTLINE Basic Semiconductor Physics – Semiconductors – Intrinsic (undoped) silicon – Doping – Carrier concentrations.
Lecture 1 OUTLINE Basic Semiconductor Physics Reading: Chapter 2.1
Presentation transcript:

Donor-Acceptor Complexes in ZnO M. Türker, M. Deicher, H. Wolf, and Th. Wichert Universität des Saarlandes Technische Physik, 66123 Saarbrücken The ISOLDE Collaboration CERN, Geneva, Switzerland

Zinc Oxide EG = 3.37 eV at RT Eexciton binding = 60 meV Bulk crystal Easy to dope n-type Difficult to dope p-type Zn NO O Bulk crystal c-axis N-typ ZnO Anwendung Transparent Conducting Oxide Exziton Bindungsenergy von ZnO is größer als von GaN und hat daher eine höhere Wahrscheinlichkeit zu lasen (laser) ZnO ist günstiger in der Herstellung als GaN EG=3,37eV bei RT gut n-typ, schwer p-typ 2

How to enhance p-type doping? possible In-N2 complex Donor-Acceptor Codoping Yamamoto and Katayama-Yoshida Physica B 302 (2001) 155 Donor-Acceptor Cluster-Doping Wang and Zunger Physical Review Letters 90 (2003) 256401 Zn O NO InZn Inwiefern ist das Bilden solcher Komplexe verantwortlich für die bessere p-Dotierung? Reaktives Sputtern N-doped Resistivity 9x103 OHMcm In-N codoped Resistivity 23.7 OHMcm 3

How to enhance p-type doping? possible In-N2 complex Donor-Acceptor Codoping Yamamoto and Katayama-Yoshida Physica B 302 (2001) 155 Donor-Acceptor Cluster-Doping Wang and Zunger Physical Review Letters 90 (2003) 256401 Zn O NO Electrical properties of ZnO films Sample Carrier type concentration InZn N doped p 3.25  1014 cm-3 In-Nx codoped 3.51  1017 cm-3 increase by factor 1000 Chen, Lu, Ye, Lin, Zhao, Ye, Li, and Zhu Applied Physics Letters 87 (2005) 252106 Inwiefern ist das Bilden solcher Komplexe verantwortlich für die bessere p-Dotierung? Reaktives Sputtern N-doped Resistivity 9x103 OHMcm In-N codoped Resistivity 23.7 OHMcm 3

Codoping with In and N by implantation possible In-N2 complex SIMS depth profiling as implanted TA=1073K t=60min 1020 1019 1018 1017 1016 Zn Concentration [ions/cm3] O NO N In I n InZn In I n N 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 depth [μm] Park, Sakaguchi, Ohashi, Hishita, and Haneda Applied Surface Science 203-204 (2003) 359 Eine Methode, die sensitiv auf die mikroskopisch lokale Umgebung auf atomarer Ebene ist rb112 4 5

Perturbed Angular Correlation (PAC) Electrical field gradient Vij strength Vzz symmetry η = orientation EFG ~ r – 3 - microscopic local Zn Zn Vxx - Vyy Vzz O O NO 111InZn 111InZn EFGlattice EFGdefect Sensitive to microscopic environment d.h. sensitiv auf Störungen in unmittelbarer Nachbarschaft der Sonde, also sensitiv auf In-Defekt Komplexe Proportional to r-3 5 6

Perturbed Angular Correlation (PAC) Donor-acceptor interaction 111In T1/2 = 3 d EC 1 Observation T1/2 = 85 ns Q 2 111Cd Rb112_2 ct002 6 7

Perturbed Angular Correlation (PAC) Donor-acceptor interaction 111In EFG ≠ 0 ω1 ω3 ω2 T1/2 = 3 d EC 1 Observation T1/2 = 85 ns Q 2 111Cd Q = w1= e Q Vzz h 10 3 p Q: quadrupole coupling constant 6 8

Intrinsic EFGlattice of ZnO 111In implantation; TA = 1100K tA = 30min c-axis : R(t) Fourier transforms EFGlattice Q = 31MHz  = 0 f = 86% detector t [ns] w [Mrad/s] 45°-geometry detector rb112 7 9

Codoping of ZnO Indium penetration in ZnO depth 974 Å depth 3368 Å 111In implantation; TA = 1100K tA = 30min R(t) Fourier transforms depth 974 Å EFGlattice Q = 31MHz  = 0 f = 86% E = 400 keV (atoms/cm3) / (atoms/cm2) In t [ns] w [Mrad/s] depth 3368 Å Group V energy penetration depth N 220keV 3368Å P 400keV 3179Å As Sb 400keV 1228Å E = 220 keV (atoms/cm3) / (atoms/cm2) N rb112 8 10

Indium-Nitrogen codoping of ZnO N (220keV) + 111In (400keV); TA = 1000K tA = 20min Q2 Q1 R(t) FT(ω) Q2 Q1 R(t) FT(ω) t [ns] w [Mrad/s] Rb137_06 Rb137_05 9 11

Indium-Nitrogen codoping of ZnO N (220keV) + 111In (400keV); TA = 1000K tA = 20min Q2 2 axial symmetrical EFGdefect: Q1 R(t) FT(ω) c-axis oriented Q1=209(1)MHz =0 f=2% Q2 Q1 basal plane oriented Q2=234(1)MHz ≤0 f=5% R(t) FT(ω) t [ns] w [Mrad/s] w [Mrad/s] Rb137_06 Rb137_05 9 12

Indium-Nitrogen codoping of ZnO Isochronic annealing f0 f2 f1 Rb166: T_M-Reihe Ct009: T_A-Reihe 10 13

Indium-Phosphorus codoping of ZnO P (400keV) + 111In (400keV); TA = 800K tA = 60min Q2 2 axial symmetrical EFGdefect: Q1 R(t) FT(ω) c-axis oriented Q1=153(1)MHz =0 f=2% Q1 Q2 basal plane oriented Q2=176(1)MHz ≤0 f=10% R(t) FT(ω) t [ns] w [Mrad/s] Rb161_02 Rb161_03 11 14

Formation of Indium-Acceptor-Pairs in II-VI semiconductors wurtzite cubic theoretical ZnO *ZnSe *ZnTe *CdTe 111In – N 209 234 271 262 280 111In – P 153 176 219 222 212 111In – As 196 199 186 111In – Sb 169 156 167 **CdTe 274 224 190 162 * Ostheimer, Jost, Filz, Lauer, Wolf, and Wichert Applied Physics Letters 69 (1996) 2840 * * Lany, Ostheimer, Wolf, and Wichert Hyperfine Interactions 136/137 (2001) 619 12 15

Formation of Indium-Acceptor-Pairs in Zinc Oxide Q [MHz] f [%] η Orientation 111In – N 209 (1) 239 (1) 2 5 ≤0.1 c-axis basal plane 111In – P 155 (1) 175 (1) 10 111In – Sb 169 (1) / 9 13 16

Possible configurations of In-NX Complexes ≠0 =0 ≤0.1 In-N3 ≠0 =0 =0 In-N4 14

Summary Donor–acceptor codoping of ZnO by ion implantation Aim: analysis of the microscopic environment on atomic level Tool: Perturbed Angular Correlation to obtain structural information PAC In-N1: 2 EFG In-P1: 2 EFG 15

Work in progress Li Na 77Br K Group VII Group I Donor Acceptor 77Br/ 77Se (60keV); TA = 1100K 77Br Group VII Donor ISOLDE CERN Group I Acceptor Li Na K Q=403 MHz Implantations: Michael Uhrmacher and Daniel Jürgens (U Göttingen) Financial support by BMBF 05KK7TS1 16

InN1-Komplex PAC-Messungen: - 2 axialsymmetrische EFGDefekt =0 ≤0 In-N-Komplex In-P-Komplex - 1 axialsymmetrisches EFGDefekt In-Sb-Komplex

Intrinsic EFGlattice of ZnO 111In diffusion; T = 1400K; t = 4d R(t) Fourier transforms output frequency Q fraction f symmetry orientation c-axis : EFGlattice Q = 31MHz = 0 f = 95% detector 45°-geometry detector ct002 22 7 22

Indium-Nitrogen codoping of ZnO TAnneal-sequence TMeasure-sequence T = 1000K t = 30min Q2 Q2 Q1 Q1 Q0 Q0 f0 f0 f2 f2 f1 f1 Rb166: T_M-Reihe Ct009: T_A-Reihe 10 23

Perturbed Angular Correlation (PAC) 111In PAC time spectra R(t) using the example of polycrystalline ZnO sample T1/2 = 3 d EC R(t) Fourier transforms EFG ≠ 0 ω1 ω3 ω2 1 T1/2 = 85 ns Q 2 111Cd Q = w1= e Q Vzz h 10 3 p Q: quadrupole coupling constant η=0; w1:w2:w3=3:2:1 η: asymmetry parameter Ct021_04 6 24

Indium-Antimon codoping of ZnO Sb (400keV) + 111In (400keV); TA = 900K tA = 30min Q2 1 axial symmetrical EFGdefect: R(t) FT(ω) Q2 basal plane oriented Q2=169(1)MHz ≈0 f=9% R(t) FT(ω) t [ns] w [Mrad/s] 12 25

Perturbed Angular Correlation (PAC) 111In diffusion; T = 1400K; t = 4d R(t) Fourier transforms EFGlattice Q = 31MHz = 0 f = 95% Ct002 rb125 6 26

polykristallin einkristallin Detektor c-Achse Probe c-Achse ^ Detektor Ebene 45°-Geometrie polykristallin einkristallin 27

Implantation 111In (400 keV) 14N (55 keV) 14N (220 keV) 14N (110 keV) TA=1073K t=30min t=60min as implanted TA=1073K t=30min t=60min as implanted 111In (400 keV) Park, Sakaguchi, Ohashi, Hishita und Haneda Applied Surface Science 203-204 (2003) 359-362 14N (55 keV) 14N (220 keV) 14N (110 keV) 28