C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon.

Slides:



Advertisements
Similar presentations
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Advertisements

Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Surface Density Structure in Outer Region of Protoplanetary Disk Jul. 24th 2014 Nobeyama UM Eiji Akiyama (NAOJ) Munetake Momose, Yoshimi Kitamura, Takashi.
DUSTY04 – Paris ALMA and ISM / Star Formation Stéphane GUILLOTEAU Observatoire de Bordeaux.
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
The Formation and Structure of Stars
Excesos IR F   Discos “flared ”
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
The Narrow-Line Region and Ionization Cone Lei Xu.
The Formation and Structure of Stars
Hot Gas in Planetary Nebulae You-Hua Chu Robert A. Gruendl Martín A. Guerrero Univ. of Illinois.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
Cool Stars 13, Hamburg 2004 FUSE Spectroscopy of Cool Stars Graham Harper CASA, University of Colorado.
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Lessons from other wavelengths. A picture may be worth a thousand words, but a spectrum is worth a thousand pictures.
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Magnetism in Herbig Ae/Be stars and the link to the Ap/Bp stars E. Alecian, C. Catala, G.A. Wade, C. Folsom, J. Grunhut, J.-F. Donati, P. Petit, S. Bagnulo,
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
6 th IRAM 30m Summer School Star formation near and far A. Fuente Observatorio Astronómico Nacional (OAN, Spain) Photon Dominated Regions I. Physical conditions.
The planetary nebula M2-9: Balmer line profiles of the nuclear region Silvia Torres-Peimbert 1 Anabel Arrieta 2 Leonid Georgiev 1 1 Instituto de Astronomía,
Hydroxyl Emission from Shock Waves in Interstellar Clouds Catherine Braiding.
Collaborators : Valentine Wakelam (supervisor)
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 1 – Introduction to Star Formation Throughout the Galaxy Lecture.
The Meudon PDR code on MHD simulations F. Levrier P. Hennebelle, E. Falgarone, M. Gerin, B. Ooghe (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
Chandra X-Ray Spectroscopy of DoAr 21: The Youngest PMS Star with a High-Resolution Grating Spectrum The High Energy Grating Spectrum of DoAr 21, binned.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
Spectropolarimetry Bag Lunch Seminar - Dec 2003 Outline 1.Background 2.Applications a)Studying the transition from AGB to post-AGB; b)Probing the structure.
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
Magnetism and Rotation in Herbig Ae/Be stars E. Alecian Laboratoire d’Astrophysique de l’Observatoire de Grenoble In collaboration with G.A. Wade, C. Catala,
Infall rates from observations Joseph Mottram 1. Why is infall relevant? Infall must happen for star formation to proceed The rate of infall on envelope.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
[CII] mapping of the diffuse ISM with SPICA / SAFARI F. Levrier P. Hennebelle P. Lesaffre M. Gerin E. Falgarone (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
Photoevaporative Mass Loss From Hot Jupiters Ruth Murray-Clay Eugene Chiang UC Berkeley.
The core of what I am going to talk about is shown
Deciphering the interplay between starlight and disks: Where is the gas? Gerrit van der Plas From disks to planets: Learning from starlight, March 18 th.
“The Dusty and Molecular Universe” October 2004
Kick-off meeting SIAMOIS Paris, mai 2006 PMS targets Seismology of Herbig stars with SIAMOIS Torsten Böhm, Marc-Antoine Dupret Claude Catala, Marie-Jo.
Spectroscopy of extrasolar planets atmosphere
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Chapter 11 The Interstellar Medium
The Herbig Ae/Be stars: what we have learnt with ESPaDOnS E. Alecian, G.A. Wade, C. Catala, C. Folsom, J. Grunhut, J.-F. Donati, P. Petit, S. Bagnulo,
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Molecules around AE Aurigae Patrick Boissé, IAP Collaborators oAndersson BG. oGalazutdinov G. oFederman S. oGerin M. oGry C. oHilly-Blant P. oKrelowski.
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
In previous episodes …... Stars are formed in the spiral arms of the Galaxy, in the densest and coldest regions of the interstellar medium, which are.
The All-Orion Spectroscopic Survey and other Hecto Surveys of Pre-main Sequence Populations James Muzerolle (for Lori Allen) with Tom Megeath, Elaine Winston,
+ IGRINS spectroscopy of Class I sources, IRAS & IRAS Seokho Lee 1, Jeong-Eun Lee 1, Sunkyung Park 1, Jae-Joon Lee 2, Benjamin Kidder.
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
MOLECULAR HYDROGEN IN THE CIRCUMSTELLAR ENVIRONMENT OF HERBIG Ae/Be STARS Claire MARTIN 1 M. Deleuil 1, J-C. Bouret 1, J. Le Bourlot 2, T. Simon 3, C.
A Low Mass H 2 Component to the AU Microscopii Circumstellar Disk Kevin France – CITA/U Toronto Aki Roberge – GSFC Roxana Lupu – JHU Seth Redfield – U.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
The Interstellar Medium
The chemistry and stability of the protoplanetary disk surface
A magnetically collimated jet from an evolved star
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

C. Catala, Observatoire de Paris, P. Feldman, JHU A. Lecavelier des Etangs, IAP C. Martin, LAM A. Roberge, Carnegie Institution of Washington T. Simon U. Hawaï A. Vidal-Madjar, IAP

FUSE: a spectrograph in the FUV spectral range : Å – R ~

Log L / L  2 Log T eff ß Pictoris A5V, 20 Myr AB Aur A0V, 2.6 Myr HD B9V,  9 Myr HD A1V, 4.7 Myr HD B9V, 2.8 Myr HD B7, 1 Myr HD B5V, 1 Myr HD B5,  1 Myr HD B5,  0.5 Myr HD B2,  0.5 Myr Van den Ancker et al. (1997 & 1998) 20 Herbig Ae/Be stars and a few main sequence stars. HD A B9.5V, 4.7 Myr HR 5999 A5Ve, 0.7 Myr

Evolved objects 7300K 8700K 9800K 10040K 10500K 10700K 12800K Main sequence stars : Main sequence stars : emission lines in the FUV in stars with T eff ≤ 8200 K (Simon et al., 2002) : Pre-main sequence stars : emission lines in stars with T eff ≤ K Bouret, Deleuil, Simon & Catala in preparation

C III

 formation temperatures: up to K  broad : up to +/- 500 km/s

 formation temperatures: up to K  broad : up to +/- 500 km/s HD  complex profiles: bulk of the emission redshifted  variations in intensity: time scale > a few days Deleuil, Lecavelier, Bouret et al., 2004 HD : OVI λ1032

Harper et al., 2001 ; Deleuil et al., 2004b

log10(F(C III)) log10(F(O VI))

 Magnetic field detected in HD (Donati 1997)  some stars have a CS disk imaged;  temperature of a few 10 6 K in the shock region;  variations in the line profiles.  the width of the observed lines is too large! at most equal to the free-fall velocity (Lamzin 1998) mass loss  additional veiling is expected needs to be investigated disk

 mass loss required;  shock region extended with temperature of a few 10 6 K  variations in the line profiles. Babel & Montmerle, 1997  X-rays emission in Ap and Bp stars  similarities of line widths in stars with different vsini !  additional veiling is expected needs to be investigated

Log10( F(O VI)) Log10( Age Myr) Log10( F(O VI)) V sini (km/s) Log10(1/2 M V inf ) ● 2 Log10(F(O VI)) Log10(F(X-rays))

    

Numerous lines in the FUV  The most abundant molecule in the CS environment of young stars  Constrains the reservoir of gas for planets building  Protected by " Self-Shielding " Franck Le Petit, PhD Thesis (2002) J v=0 H 2 in the FUSE spectral domain: Lyman transitions B-X ( ) Werner transitions C-X ( )

 Airglow lines

OVI doublet Å  Airglow lines

Green: Stellar Continuum Blue : Intrinsic Profile Red : Resulting Profile Column densities Radial velocities Line widths (b) Gas bound to the star Owens The Owens Profile Fitting Procedure (M. Lemoine et al. 2002) Martin et al. (2004)

H 2 thermalized up to J=3H 2 thermalized up to J=4

H 2 detected by FUSE: Remnant of the original molecular cloud Very extended disk with an inclination angle: 27°    35° from the plane of the sky (Eisner et al. 2003, Mannings & Sargent 1997) Excitation Conditions = Interstellar Medium Gry et al. (2002)  H 2 thermalized up to J=2  Excitation temperature ~ 50K

HD & HD  Stars surrounded by disks  H 2 Thermalized up to J=4 Collisionally excited medium close to the star < 5 AU (Lecavelier des Etangs, Deleuil et al. 2003)  Disks inclination angles to the lines of sight: (Grady et al. 2000; Augereau et al. 2001) HD :  = 60°  5° HD :  = 51°  3° Extended chromosphere located above the disk ?

HERBIG Be STARS  B8 – B2 stars  H2 Thermalized up to J=3  J=0-3 Temperature: ~100 K  Higher J-levels ~1300 K Very similar to the H 2 excitation in PDRs Bouret, Martin et al. (2003)

RESULTS FOR HD To reproduce the excitation diagram: 2 PDRs are needed: a large PDR with low density for the lower J-levels a dense PDR close to the star for the higher J-levels Compatible with images:  MSX (A band 8.8 µm): Hot dust close to the star  DSS2 (R and I bands): Very large dark cloud Martin et al. (in prep) PHOTODISSOCIATION REGIONS MODEL J. Le Bourlot, "Molecules in the Universe" Team, Observatoire de Paris

 Youngest stars of the sample - HBe Envelopes: remnant of their original cloud HD : PDRs models with 2 components TBD : complete the analysis for the whole sample (under progress)  Stars with circumstellar disk Collisionally excited medium close to the star Goal: explain the excitation diagrams of stars with disk TBD: include radiative transfer of H 2 in models of disk 