1 Introduction filtering-0710-v04.pdfhttp://www.ieee802.org/1/files/public/docs2010/liaison-nfinn-split-horizon-vid-

Slides:



Advertisements
Similar presentations
Multi Domain Traffic Engineered Transport Networks (E-OTN, PTN) supporting P2P, P2MP, RMP and MP2MP Ethernet Services An overview of architecture and functionality.
Advertisements

Port group model in G.8021 Akira Sakurai G.8021 Co-editor IEEE and ITU-T Q.9/15 Ethernet Transport issues (Geneva, 27 May 2010)
1 Introduction
1 Introduction vid-filtering-0710-v04.pdfhttp://
1 Introducing the Specifications of the Metro Ethernet Forum.
G : DCM Signaling Mechanism Using GMPLS RSVP-TE ITU-T Workshop on IP-Optical, Chitose, Japan 7/11/2002 Dimitrios Pendarakis, Tellium, Inc. ITU-T.
1 DRNI Examples and DAS position Maarten Vissers
1 DRNI Examples and DAS position Maarten Vissers Version 01.
© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—2-1 Extending Switched Networks with Virtual LANs Introducing VLAN Operations.
1 Distributed Network Protection (DNP) architecture study Maarten Vissers v4 v2: includes a few slides at the end illustrating segment protection.
802.1Qay PBB-TE Protection Switching Overview
1 DRNI and Distributed Protection Examples Maarten Vissers v01 Based on slides presented in IW meeting in Nanjing on Thursday Sept 22.
1 Distributed Network Protection (DNP) architecture study Maarten Vissers v3 v2: includes a few slides at the end illustrating segment protection.
Chapter 9 Local Area Network Technology
DRNI Examples, DAS position, MEP/MIP position
Oct 12, 2004CS573: Network Protocols and Standards1 Virtual LANs Network Protocols and Standards Autumn
Ethernet and switches selected topics 1. Agenda Scaling ethernet infrastructure VLANs 2.
1 Version 3 Module 8 Ethernet Switching. 2 Version 3 Ethernet Switching Ethernet is a shared media –One node can transmit data at a time More nodes increases.
1 Chapter 8 Local Area Networks - Internetworking.
VLANs Semester 3, Chapter 3 Allan Johnson Website:
Institute of Technology, Sligo Dept of Computing Semester 3, version Semester 3 Chapter 3 VLANs.
Jan 10, 2008CS573: Network Protocols and Standards1 Virtual LANs Network Protocols and Standards Winter
1 K. Salah Module 4.3: Repeaters, Bridges, & Switches Repeater Hub NIC Bridges Switches VLANs GbE.
1 25\10\2010 Unit-V Connecting LANs Unit – 5 Connecting DevicesConnecting Devices Backbone NetworksBackbone Networks Virtual LANsVirtual LANs.
1 Multipoint Ethernet Connection Protection
Virtual LANs. VLAN introduction VLANs logically segment switched networks based on the functions, project teams, or applications of the organization regardless.
Connecting LANs, Backbone Networks, and Virtual LANs
We will be covering VLANs this week. In addition we will do a practical involving setting up a router and how to create a VLAN.
Q description of G.8031 Ethernet Connection (EC) SubNetworkConnection (SNC) Protection “VLAN Segment Protection” Maarten Vissers v2.
VLAN Trunking Protocol (VTP)
Doc.: IEEE /0981r1 TGs Reference Architecture Considerations September 6, 2004 Tricci So & W. Steven Conner.Slide 1 TGs ESS Mesh System Reference.
Virtual Networking. Module Objectives By the end of this module participants will be able to: Understand the use of virtual LANs Create VLAN subinterfaces.
1/28/2010 Network Plus Network Device Review. Physical Layer Devices Repeater –Repeats all signals or bits from one port to the other –Can be used extend.
1 Portal Models Maarten Vissers v1. 2 DRNI Applicability DRNI model is applicable to many different portal types 1.PB Portal (S-DRNI) 2.BCB.
Chapter 8: Virtual LAN (VLAN)
Cisco 3 - LAN Perrine. J Page 110/20/2015 Chapter 8 VLAN VLAN: is a logical grouping grouped by: function department application VLAN configuration is.
© 2002, Cisco Systems, Inc. All rights reserved..
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 1: Introduction to Scaling Networks Scaling Networks.
Chapter 3 - VLANs. VLANs Logical grouping of devices or users Configuration done at switch via software Not standardized – proprietary software from vendor.
STORE AND FORWARD & CUT THROUGH FORWARD Switches can use different forwarding techniques— two of these are store-and-forward switching and cut-through.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Connecting Devices CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL Department of Electronics and.
Switching Topic 2 VLANs.
Switching Topic 3 VTP. Agenda VTP basics Components Frames and advertisements Domains and revision numbers VTP operations VTP pruning VTP issues.
Chapter 4 Version 1 Virtual LANs. Introduction By default, switches forward broadcasts, this means that all segments connected to a switch are in one.
W&L Page 1 CCNA CCNA Training 2.5 Describe how VLANs create logically separate networks and the need for routing between them Jose Luis.
Topic 5 Spanning tree protocol
Portal Models Maarten Vissers v2
18-WAN Technologies and Dynamic routing Dr. John P. Abraham Professor UTPA.
Chapter-5 STP. Introduction Examine a redundant design In a hierarchical design, redundancy is achieved at the distribution and core layers through additional.
1 Distributed Network Protection (DNP) architecture study Maarten Vissers v1.
NSI Topology v2.0 Version 1.2 John MacAuley, ESNET September 22, 2014 Uppsala.
1 Packet Switching Outline Switching and Forwarding Bridges and Extended LANs.
Ethernet Packet Filtering - Part1 Øyvind Holmeide Jean-Frédéric Gauvin 05/06/2014 by.
Draft-mpls-tp-OAM-maintnance-points-00
Supporting VUNI in DRNI Maarten Vissers v00
© 2002, Cisco Systems, Inc. All rights reserved.
Advanced Computer Networks
Virtual LANs.
IOS Network Model 2nd semester
18-WAN Technologies and Dynamic routing
Advanced Network Training
VLAN Trunking Protocol
Network Virtualization
Connecting LANs, Backbone Networks,
Chapter 3 VLANs Chaffee County Academy
Chapter 2: Scaling VLANs
Virtual LAN VLAN Trunking Protocol and Inter-VLAN Routing
Introduction Multi (e.g. 2) domain E-LAN example
Virtual LAN (VLAN).
Presentation transcript:

1 Introduction filtering-0710-v04.pdfhttp:// filtering-0710-v04.pdf describes in pages 19 and 20 the “Optimal distribution of data: Non-802.1aq” and “Using VIDs for manually configured optimum data distribution” The following slides expand the description in those two pages with  Multi (e.g. 2) domain E-LAN example  1 root and 2 roots E-Tree examples  Internal node configuration details for E-LAN and E-Tree cases, including  Relay VIDs and switch configurations  Egress filtering  Egress and ingress VID translation,  Per domain local VID values  Per link local VID values (used in transport networks)  Primary VID values in MEPs and MIPs v02 adds some E-Tree cases, corrections of some mistakes in v01, an evaluation of UP and Down MEP/MIP primary VID values and support of those multi-VID models in G.8021

2 Configuration of ‘I’ and ‘V’ relay- VIDs, local VIDs, egress filtering and VID translation Internal configuration of node B1 with the E-LAN FID including the ‘I’ and ‘V’ relay-VID learning and forwarding processes and VID translation at the egress ports B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 B1 B2 B3 V V I V I I V V V C12 C2 C3 V V V,I V X: Local VID X: Relay-VID VIVI X  Y, Y  X : relay-VID X to local-VID Y Translation at egress port IVIV VIVI VIVI IVIV IVIV IVIV VIVI VIVI I V SVL C11 I V I V I V I V V V I I P11 V V,I IVIV P13 P12 P10 P11 E-LAN (1 domain) I I I VLAN has common local VID value ‘I’ on the inner links B1- B2, B2-B3 and B3-B1 SVL: Shared VLAN Learning VLAN has 2 relay-VID values ‘I’ and ‘V’ which operate in SVL mode VID Translation at egress port V V V V

3 Extension of previous example with a 2 nd domain with edge nodes B2-B4-B5  VLAN with two domains interconnected by node B2 Next slide illustrates  Need for two inner domain VIDs (Ia, Ib) in this case  Relay-VIDs registered at each output port  VID translation at egress ports  VID values used on the links between the nodes  Detailed architecture in node B2 (FID with 3 relay-VIDs, SVL, VID Translation) B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 C52 C51 P11 E-LAN (2 domains) B4B5 P24 P25 P52 P54 P42 P45 P50 P40 C4 P55 VLAN has two domains with a full mesh of links C11

4 B1 B2 B3 C12 C2 C3 C52 C11 C51 E-LAN (2 domains) B4B5 C4 B2 Ia V SVL Ia V Ib V Ia V V Ib P23 P24 P20 P21 V,Ib Ia V V V V V,Ia V,Ia,Ib V,Ia V Ia  V V,Ib  Ia V  Ia Ia  V V  Ia V  Ia,Ib V V,I IVIV V,Ib V V V,Ib  Ia Ib V V V V,Ia V V V V V,Ia  Ib Ib  V,Ia V,Ib V  Ib V  Ib Ib  V V,Ib Ib  V Ib Ib  V V,Ib Ia Ib P25 Ib V Ia V Ib V Ia Ib VLAN has common local VID value ‘Ib’ on the inner links B2- B4, B4-B5 and B5-B2 VLAN has common local VID value ‘Ia’ on the inner links B1- B2, B2-B3 and B3-B1 VLAN in Node B2 has 3 relay- VID values ‘Ia’, ‘Ib’ and ‘V’ which operate in SVL mode VID Translation at egress port X: Local VID X: Relay-VID X  Y, Y  X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning

5 B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 B1 B2 B3 V V R V Q P V V V C12 C2 C3 V V V,I V IRVRIRVR X  Y, Y  X : relay-VID X to local-VID Y Translation at egress port IVIV IPVPIPVP IQVQIQVQ PIPVPIPV QIQVQIQV RIRVRIRV VIVI VIVI I V SVL C11 I V I V R V Q V V V Q R P11 V V,I IVIV P13 P12 P10 P11 E-LAN (1 domain) X  Y, Y  X : local-VID Y to relay-VID X Translation at ingress port R I Q I R Q P VID Translation at ingress port VLAN has different local VID values ‘P’, ‘Q’ and ‘R’ on the inner links B1- B2, B2-B3 and B3-B1 X: local VID X: Relay-VID SVL: Shared VLAN Learning VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links. A requirement in transport networks.

6 B1 B2 B3 C12 C2 C3 C52 C11 C51 E-LAN (2 domains) B4B5 C4 B2 Ia V SVL Ia V L V R V V P R L P23 P24 P20 P21 V,Ib R Q P V V V V V,I V,Ia,Ib V,I V IVIV VIVI V  Ia,Ib V V,I IVIV V,Ib V V M L K V V V V,Ia V V V V Ib  L V,Ia  L K  Ib K  V,Ia V,I VIVI VKIKVKIK VMIMVMIM MVMIMVMI LILVLILV IVIV Ib IVIV V,I R Ib P25 Ib V L Ia P V P Ib K V K Ia K VLAN has different local VID values ‘P’, ‘Q’ and ‘R’ on the inner links B1- B2, B1-B3 and B3-B2 VLAN has different local VID values ‘K’, ‘L’ and ‘M’ on the inner links B2- B4, B2-B5 and B5-B4 Ia  R V,Ib  R Ia  P V,Ib  P IQVQIQVQ PIPVPIPV QIQVQIQV RIRVRIRV P Ia R L Ib K VID Translation at ingress port X: Local VID X: Relay-VID X  Y, Y  X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X  Y, Y  X : local-VID Y to relay-VID X Translation at ingress port VID translation at the ingress ports in the domain enables the usage of different local VID values on each of the inner domain links in both domains. A requirement in transport networks.

7 Security in transport networks In the previous E-LAN examples ingress VID Translation is not deployed at all input ports (e.g. not on P20) With the “Ingress Filtering” parameter set to ‘disabled’ those VLAN connections are not secured; frames arriving on other input ports of e.g. node B4 with a local VID value ‘V’ can enter the E-LAN VLAN This security issue is resolved when ingress VID translation is deployed at every input port This prevents that frames with unexpected local VID values can access the port and intrude the VLANs

8 VID Translation for E-LAN (2 domains) example When using different VID values on the links between nodes it is required to identify the ports which form a group and ports which are individual  All individual ports must be associated with a relay VID (R-VID) value identifying Individual ports  Ports which form a group must be associated with a R-VID value identifying that group  Administration of individual ports and grouped ports is done via the Ingress VID Translation tables in each port (see next slide for example) For node B2 the following applies:  Group 1: (P21,P23): R-VID: Ia  Group 2: (P24,P25): R-VID: Ib  Individual: P20: R-VID: V For node B5:  Group 1: (P52,P54): R-VID: I  Individual: P50,P55: R-VID: V B1 B2 B3 P21 P23 P32 P31 P13 P12 P10 P20 P30 C12 C2 C3 C52 C11 C51 P11 B4B5 P24 P25 P52 P54 P42 P45 P50 P40 C4 P55 VID: R VID: Q VID: P VID: M VID: L VID: K VID: A VID: B VID: C VID: D VID: E VID: F VID: G

9 Using VIDs for manually configured optimum data distribution for E-LAN (2 domains) example using ingress VID translation on all ports BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B2P20V, Ia, Ib BVBVIa  B, Ib  B, V  B P21V, Ib P  Ia (Group 1) Ib  P, V  P P23V, Ib R  Ia (Group 1) Ib  R, V  R P24V, Ia K  Ib (Group 2) Ia  K, V  K P25V, Ia L  Ib (Group 2) Ia  L, V  L B5P50V, I DVDVI  D, V  D P52V L  I (Group 1) VLVL P54V M  I (Group 1) VMVM P55V, I EVEVI  E, V  E B1………… B3………… B4…………

10 Port Group concept in transport networks The logical concept of a “Port Group” could be maintained in a transport network as a configuration element in the manually configured optimum data distribution for E-LAN connection management  Each port in a node in such E-LAN is marked as either an Individual Port or as a port in a Port Group #i (i≥1)  The ports in a Port Group will see their local VID values translated into a common relay VID value in the ingress VID translation process  Relay VID values for the individual and the port group ports have a node local scope; each node can select those values independent of other nodes

11 E-Tree

12 E-Tree types There are four types of E-Tree  Unidirectional P2MP E-Tree (outside scope of this document)  Bidirectional RMP E-Tree with single root and individual leaves  Bidirectional RMP E-Tree with multiple roots and individual leaves  Bidirectional RMP E-Tree with multiple roots, individual leaves and one or more leaf groups The 4 th type requires the use of the largest set of relay VID values and local VID values  Relay VIDs identify the frame’s source and potential set of destination ports: R, I, V G1 to V GN  Local VIDs identify the frame’s source port: root, individual leaf, leaf group #i The 2 nd type requires the use of two relay VID values (R, I) and one local VID value per link  Local VID identifies in the frame’s source port: root, individual leaf  Ingress VID translation converts local VID value to appropriate relay VID value  Egress VID translation converts both relay VID values to same local VID value The 3 rd type requires the use of two relay VID values (R, I) and one or two local VID values per link  Local VID values can not be pruned to single value on the links between the root ports Next slides illustrate the 2 nd, 3 rd and 4 th E-Tree types and their configuration details from the viewpoint of a transport network

13 E-Tree (1 root, no leaf groups) Ports  Root: R1  Leaf: L1,L2,L3,L4,L51,L52 Local VID values  A to G, K, L, P, Q Relay VID values  I, R Single local VID value for both directions of transport per link, e.g.  B2-B4 link: K Possible due to  usage of ingress and egress VID translation  single root B1 B2 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 L52 R1 L51 P11 B4B5 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G

14 B1 B2 B3 E-Tree (1 root, no leaf groups) B4B5 Q P R R R IFRFIFRF AIARAIAR BIBRBIBR R,I R  G R,I  G R,I L K RR ILRLILRL KIKRKIKR R CICRCICR R  K R,I  K L  R L  I,R R IEREIERE IDRDIDRD R R  P R,I  P IQRQIQRQ PIPRPIPR Q,I  R Q  I X: Local VID X: Relay-VID X  Y, Y  X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X  Y, Y  X : local-VID Y to relay-VID X Translation at ingress port L1 L2 L3 L52 R1 L51 L4 A B C E F G D B2 I R SVL L R P L P24 P20 P21 P25 P R P R K R K P I L I R B I B B K I R R Graphical representation of configuration details… R,I

15 Using VIDs for manually configured optimum data distribution for E-Tree (1 root, no leaf groups) example BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B1P10R AIAIRARA P11R,I GRGRI  G, R  G P12R PIPIRPRP P13R QIQIRQRQ B2P20R BIBIRBRB P21R,I PRPRI  P, R  P P24R KIKIRKRK P25R LILIRLRL B3P30R FIFIRFRF P31R,I QRQRI  Q, R  Q B4P40R CICIRCRC P42R,I KRKRI  K, R  K B5P50R DIDIRDRD P52R,I LRLRI  L, R  L P55R EIEIRERE

16 E-Tree (2 roots, no leaf groups) B1 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 R5 R1 L5 P11 B4 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G M R B2 B5 Ports  Root: R1, R5  Leaf: L1,L2,L3,L4,L5 Local VID values  A to G, K, L, M, P, Q, R Relay VID values  I, R Single local VID value for both directions of transport for subset of links with only individual leaves behind it  B2-B4 link: K Two local VID values for other subset of links with roots plus individual leaves behind it; i.e.  B1-B2 link: P, R  B2-B5 link: L, M Possible due to  usage of ingress and egress VID translation 1 local VID value 2 local VID values

17 B1 B3 E-Tree (2 roots, no leaf groups) B4 Q R R R R IFRFIFRF AIARAIAR BIBRBIBR R,I R  G R,I  G R,I L K R ILILRMRMILILRMRM KIKRKIKR R CICRCICR R  K R,I  K LILIMRMRLILIMRMR R,I R  E R,I  E IDRDIDRD R RRRRIPIPRRRRIPIP IQRQIQRQ PIPIRRRRPIPIRRRR Q  R Q  R,I X: Local VID X: Relay-VID X  Y, Y  X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X  Y, Y  X : local-VID Y to relay-VID X Translation at ingress port L1 L2 L3 R5 R1 L5 L4 A B C E F G D B2 I R SVL M R P M P24 P20 P21 P25 P I R R K R K P I L I R B I B B K I R,I R R R L I M R R L M B5 B2 P Graphical representation of configuration details… R,I

18 Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, no leaf groups) example BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B1P10R AIAIRARA P11R,I GRGRI  G, R  G P12R,I PI, RRPI, RRI  P, R  R P13R QIQIRQRQ B2P20R BIBIRBRB P21R,I PI, RRPI, RRI  P, R  R P24R KIKIRKRK P25R,I LI, MRLI, MRI  L, R  M B3P30R FIFIRFRF P31R,I QRQRI  Q, R  Q B4P40R CICIRCRC P42R,I KRKRI  K, R  K B5P50R DIDIRDRD P52R,I LI, MRLI, MRI  L, R  M P55R,I EIEII  E, R  E

19 E-Tree (2 roots, 1 leaf group) B1 B3 P21 P31 P13 P12 P10 P20 P30 L1 L2 L3 R5 R1 L5 P11 P24 P25 P52P42 P50 P40 L4 P55 Q P L K A B C D E F G M R B5 Ports  Root: R1, R5  Leaf: L1,L2,L3,L4,L5  Leaf group 1: LG14,LG13 Local VID values  A to H,J, K, L, M, N,O,P,Q, R,S,T Relay VID values  I, R, V G1 2 local VID values 3 local VID values P41 LG14 H B4 N O S T P33 LG13 J B2

20 B1 B3 E-Tree (2 roots, 1 leaf group) B4 Q R R R R IFRFIFRF AIARAIAR BIBRBIBR R,I,V G1 R  G R,I,V G1  G R,I,V G1 L K R,V G1 R,I,V G1 V G1  O V G1  O I  L I  L R  M R  M K  I K  R N  V G1 N  V G1 R CICRCICR R  K R,I  K V G1  N V G1  N O  V G1 O  V G1 L  I L  I M  R M  R R,I,V G1 R  E R,I,V G1  E IDRDIDRD R I  Q R  Q V G1  T V G1  T Q  R Q  I T  V G1 T  V G1 X: Local VID X: Relay-VID X  Y, Y  X : relay-VID X to local-VID Y Translation at egress port SVL: Shared VLAN Learning X  Y, Y  X : local-VID Y to relay-VID X Translation at ingress port L1 L2 L3 R5 R1 L5 L4 A B C E F G D B2 I R SVL M R P M P24 P20 P21 P25 P I R R K R K P I L I R B I B B K I R,I,V G1 R, V G1 R R L I M R R L M B5 B2 P Graphical representation of configuration details… N S T LG14 H LG13 J R,V G1 O V G1  J V G1  J R  J V G1 N VG1VG1 N N S S S O VG1VG1 O O S  V G1 S  V G1 P  I P  I R  R R  R V G1  S V G1  S I  P I  P R  R R  R R,V G1 H  R H  V G1 H  V G1

21 Using VIDs for manually configured optimum data distribution for E-Tree (2 roots, 1 leaf group) example BridgePortCan transmit (before xlate) (Ingress) VID Translation Egress VID Translation B1P10R AIAIRARA P11R,I,V G1 GRGRI  G, R  G, V G1  G P12R,I,V G1 P  I, R  R, S  V G1 I  P, R  R, V G1  S P13R,V G1 Q  I, T  V G1 R  Q, V G1  T B2P20R BIBIRBRB P21R,I,V G1 P  I, R  R, S  V G1 I  P, R  R, V G1  S P24R,V G1 K  I, N  V G1 R  K, V G1  N P25R,V G1 LILIRLRL B3P30R FIFIRFRF P31R,I,V G1 QRQRI  Q, R  Q P33R,V G1 J  V G1 R  J, V G1  J B4P40R CICIRCRC P41R,V G1 DIDIRDRD P42R,I,V G1 KRKRI  K, R  K B5P50R DIDIRDRD P52R,I,V G1 LRLRI  L, R  L P55R,V G1 ERERI  E, R  E, V G1  E

22 E-LAN/E-Tree in ITU-T models

23 G.8021 E-LAN/E-Tree modelling 802.1Q multi-VID E-LAN/E-Tree models can be 1-to-1 translated into G.8021 ETH layer model  Each relay VID reference point is represented by an ETH_FP (Flow Point) reference point  The multi relay-VID FID is represented by an “ETH Flow Forwarding (FF) process in SVL mode” within an ETH Connection function (see clause 9.1.1/G.8021) ‘I’ ‘R’ VID Translation relates local VID with one or more ETH_FPs Relay-VID reference point Set of ETH_FPs represents EISS ETH_AP represents ISS reference point G.8021 ETH Flow Forwarding (FF) process in SVL mode Relay-VID ‘I’ learning and forwarding process Relay-VID ‘R’ learning and forwarding process G.8021 ETH to ETH multiplexing adaptation function

24 MEP and MIP functions in E-LAN/E-Tree

25 Looking at the model of E-LAN Node B2 I am wondering where the MEP and MIP functions should be located Two locations are considered  Red  Green Red locations imply that the VID Translation is located between the UP MEPs and the MAC Relay, which is not consistent with its current location in the clause 6.9 Support of the EISS function Green locations are consistent with 802.1Q functionality order, but require extensions to the G.8021 MEP Sink and MIP Sink functions, which currently do not support to read OAM from “multiple VIDs” MEPs and MIPs in these E-LAN cases B2 Ia V SVL Ia B L V R V P R L P23 P24 P20 P21 Ib R P25 Ib B L Ia P V P Ib K V K Ia K P R L Ib K V B V B

26 MEPs and MIPs in these E-Tree cases Looking at the model of E-Tree Node B2 I am wondering where the MEP and MIP functions should be located Two locations are considered  Red  Green Red locations imply that the VID Translation is located between the UP MEPs and the MAC Relay, which is not consistent with its current location in the clause 6.9 Support of the EISS function Green locations are consistent with 802.1Q functionality order Both Red and Green locations require extensions to the G.8021 MEP Sink and MIP Sink functions to support reading from “multiple VIDs” B2 I R SVL M R P M P24 P20 P21 P25 P I R R K R K P I L I R B I B B K I R R L I M R R L

27 Ia B MEP and MIP primary VID assignments in E-LAN node B2 Up MEP and Half MIP functions have different primary VID (Ia) than Down MEP/Half MIP (V) Up MEP and Half MIP functions have different primary VID (Ib) than Down MEP/Half MIP (V) MAC Relay Ib IaV LAN Ia.. V Ib.. Primary VID: Ib Primary VID: V P24 and P25 Ia IbV LAN Ib.. V Ia.. Primary VID: Ia Primary VID: V P21 and P23 V IbV LAN Ib B V B V B Primary VID: V P20 Up and Down MEP and Half MIP functions have same primary VID (V) Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (V, Ia and Ib); configuration should be performed carefully

28 R R.. MEP and MIP primary VID assignments in 3 rd type E-Tree node B2 Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R) MAC Relay I R LAN R.. I Primary VID: I Primary VID: R P20 and P24 I IR LAN I.. R I Primary VID: R P21 and P25 Up and Down MEP and Half MIP functions have same primary VID (R) Primary VID values for the Up MEP/HalfMIP functions on the two port sets are different (R and I); configuration should be performed carefully

29 R R.. MEP and MIP primary VID assignments in 4 th type E-Tree node B2 Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R) MAC Relay I R LAN R B I B Primary VID: I Primary VID: R P20 I IR LAN I.. R I Primary VID: R P21 and P25 Up and Down MEP and Half MIP functions have same primary VID (R) Primary VID values for the Up MEP/HalfMIP functions on the three port sets are different (R and I); configuration should be performed carefully V G1.. V G1.. V G1 N I R LAN V G1 N R K I K Primary VID: I Primary VID: R P24 Up MEP and Half MIP functions have different primary VID (I) than Down MEP/Half MIP (R)

30 G.8021 MEP/MIP functions G.8021 ETH MIP function has single ETH_FP  To support the multi-VID E-Tree the G.8021 MIP function should get multiple ETH_FPs  OAM XXM frames may ingress on each of those ETH_FPs and the associated XXR frames may egress on the primary_ETH_FP G.8021 specifies ETH MEP and ETHG MEP functions  ETH MEP function contains a single ETH_FP  ETHG MEP function contains multiple ETH_FPs  OAM frames can be read/extracted from one ETH_FP only  OAM frames can be generated/inserted into one ETH_FP only  The multi-VID E-Tree models require and ETH MEP function with multiple ETH_FPs, with reading/extracting capabilities of OAM frames on every ETH_FP and generating/inserting capabilities of OAM frames on the primary_ETH_FP only  ETH and ETHG MEP functions could be merged into one ETH MEP function, or alternatively the ETH MEP function can be left unchanged and the ETHG MEP function can be extended to read/extract OAM from every ETH_FP