Lorenzo Amati INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna.

Slides:



Advertisements
Similar presentations
GRB : a canonical fake short burst L. Caito, M.G. Bernardini, C.L. Bianco, M.G. Dainotti, R. Guida, R. Ruffini. 3 rd Stueckelberg Workshop July 8–18,
Advertisements

Masanori Ohno (ISAS/JAXA). HXD: keV WAM: 50keV-5MeV XIS: keV X-ray Afterglow (XIS + HXD withToO) Wide energy band ( keV) Ultra-low.
Statistical Properties of GRB Polarization
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
GRB Spectral-Energy correlations: perspectives and issues
GRB afterglows as background sources for WHIM absorption studies A. Corsi, L. Colasanti, A. De Rosa, L. Piro IASF/INAF - Rome WHIM and Mission Opportunities.
Reverse Shocks and Prompt Emission Mark Bandstra Astro
(Long) Gamma-Ray Bursts as cosmological probes Davide Lazzati (JILA, U of Colorado) Gabriele Ghisellini (OAB); Giancarlo Ghirlanda (OAB); Claudio Firmani.
Spectral Energy Correlations in BATSE long GRB Guido Barbiellini and Francesco Longo University and INFN, Trieste In collaboration with A.Celotti and Z.Bosnjak.
Constraining the Properties of Dark Energy Using GRBs D. Q. Lamb (U. Chicago) High-Energy Transient ExplorerSwift Department of Astronomy, Nanjing University.
1 Nanjing June 2008 A universal GRB photon energy – luminosity relationship * Dick Willingale, Paul O’Brien, Mike Goad, Julian Osborne, Kim Page, Nial.
Gamma-Ray Bursts: The Most Brilliant Events in the Universe D. Q. Lamb (U. Chicago) PHYSICS for the THIRD MILLENNIUM: II Huntsville, AL 5–7 April 2005.
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
THE GAMMA-RAY BURST HUBBLE DIAGRAM TO z=6.6 Brad Schaefer Louisiana State University HUBBLE DIAGRAMS  PLOT DISTANCE vs. REDSHIFT  SHAPE OF PLOT  EXPANSION.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
The Present and Future of GRB Cosmography Andrew S. Friedman (Harvard-CfA) & Joshua S. Bloom (Harvard-CfA / UC Berkeley)
Towards a More Standardized Candle Using GRB Energetics & Spectra Andrew S. Friedman 1 and Joshua S. Bloom 1,2 (astro-ph/ ) 1: Harvard-Smithsonian.
Yong-Yeon Keum (Seoul National University) APCTP/IEU-Focus-Program on Cosmology and Fundamental Physics.
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
A Cosmology Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram Nan Liang Collaborators: Wei-Ke Xiao, Yuan Liu, Shuang-Nan.
Swift Nanjing GRB Conference Prompt Emission Properties of X-ray Flashes and Gamma-ray Bursts T. Sakamoto (CRESST/UMBC/GSFC)
The Transient Universe: AY 250 Spring 2007 Existing Transient Surveys: High Energy I: Gamma-Ray Bursts Geoff Bower.
X-Ray Flashes D. Q. Lamb (U. Chicago) “Astrophysical Sources of High-Energy Particles and Radiation” Torun, Poland, 21 June 2005 HETE-2Swift.
Jet Models of X-Ray Flashes D. Q. Lamb (U. Chicago) Triggering Relativistic Jets Cozumel, Mexico 27 March –1 April 2005.
COSMIC GAMMA-RAY BURSTS The Current Status Kevin Hurley UC Berkeley Space Sciences Laboratory.
Lorenzo Amati INAF - IASF Bologna INAF - IASF Bologna with main contributions by: M. Della Valle, F. Frontera, C. Guidorzi with main contributions by:
High energy emission in Gamma Ray Bursts Gabriele Ghisellini INAF – Osservatorio Astronomico di Brera.
The E p,i – E iso correlation in the Swift era Lorenzo Amati (INAF/IASF BO, Bologna, Italy)
Properties of X- Ray Rich Gamma- Ray Bursts and X -Ray Flashes Valeria D’Alessio & Luigi Piro INAF: section of Rome, Italy XXXXth Moriond conference, Very.
Gamma Ray Bursts: open issues  Brief history  Power  Short history of the paradigm: internal vs external shocks  Afterglows: external shocks  The.
Is the Amati relation due to selection effects? Lara Nava In collaboration with G. Ghirlanda, G.Ghisellini, C. Firmani Egypt, March 30-April 4, 2009 NeutronStars.
How Standard are Cosmological Standard Candles? Mathew Smith and Collaborators (UCT, ICG, Munich, LCOGT and SDSS-II) SKA Bursary Conference 02/12/2010.
The Early Time Properties of GRBs : Canonical Afterglow and the Importance of Prolonged Central Engine Activity Andrea Melandri Collaborators : C.G.Mundell,
Fermi Observations of Gamma-ray Bursts Masanori Ohno(ISAS/JAXA) on behalf of Fermi LAT/GBM collaborations April 19, Deciphering the Ancient Universe.
Lorenzo Amati INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna 43 rd Rencontres.
GRB physics and cosmology with the E p,i – E iso correlation Lorenzo Amati INAF – IASF Bologna (Italy) Third Stueckelberg Workshop (July 8th to 19th, 2008.
Dark Gamma-Ray Bursts and their Host Galaxies Volnova Alina (IKI RAS), Pozanenko Alexei (IKI RAS)
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
Measuring the cosmological parameters with Gamma-Ray Bursts Massimo Della Valle European Southern Observatory (ESO-Munchen) ICRANet (Pescara) INAF-Osservatorio.
Gamma-Ray Bursts in the Fermi/GLAST era Lorenzo Amati INAF – IASF Bologna (Italy)
Kunihito IOKA (Osaka Univ.) 1.Observation 2.Fireball 3.Internal shock 4.Afterglow 5.Jet 6.Central engine 7.Links with other fields 8.Luminosity-lag 9.X-ray.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
Extending the cosmic ladder to z~7 and beyond: using SNIa to calibrate GRB standard candels Speaker: Speaker: Shuang-Nan Zhang Collaborators: Nan Liang,
Lorenzo Amati INAF - IASF Bologna INAF - IASF Bologna with main contributions by: M. Della Valle, F. Frontera, C. Guidorzi, M. De Laurentis, E. Palazzi.
Lorenzo Amati INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna XLIV Rencontres.
A Unified Model for Gamma-Ray Bursts
BeppoSAX Observations of GRBs: 10 yrs after Filippo Frontera Physics Department, University of Ferrara, Ferrara, Italy and INAF/IASF, Bologna, Italy Aspen.
A Cosmology Independent Calibration of Gamma-Ray Burst Luminosity Relations and the Hubble Diagram Shuang-Nan Zhang Collaborators: Nan Liang, Wei-Ke Xiao,
The GRB Luminosity Function in the light of Swift 2-year data by Ruben Salvaterra Università di Milano-Bicocca.
Gamma-Ray Bursts. Short (sub-second to minutes) flashes of gamma- rays, for ~ 30 years not associated with any counterparts in other wavelength bands.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
A relation to estimate the redshift from the X-ray afterglow light curve Bruce Gendre (IASF-Roma/INAF) & Michel Boër (OHP/CNRS)
Daisuke YONETOKU (Kanazawa Univ.) T. Murakami (Kanazawa Univ.), R. Tsutsui, T. Nakamura (Kyoto Univ.), K. Takahashi (Nagoya Univ.) The Spectral Ep–Lp and.
L. Amati, E. Maiorano, E. Palazzi, R. Landi, F. Frontera, N. Masetti, L. Nicastro, M. Orlandini INAF-IASF Bologna (Italy) Unveiling GRB hard X-ray afterglow.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
A Cosmology Independent Calibration of GRB Luminosity Relations and the Hubble Diagram Speaker: Speaker: Liang Nan Collaborators: Wei Ke Xiao, Yuan Liu,
Radio afterglows of Gamma Ray Bursts Poonam Chandra National Centre for Radio Astrophysics - Tata Institute of Fundamental Research Collaborator: Dale.
A complete sample of long bright Swift GRBs: correlation studies Paolo D’Avanzo INAF-Osservatorio Astronomico di Brera S. Campana (OAB) S. Covino (OAB)
1 Gravitational waves from short Gamma-Ray Bursts Dafne Guetta (Rome Obs.) In collaboration with Luigi Stella.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Gamma-Ray Bursts Please press “1” to test your transmitter.
Sorting out GRB correlations with spectral peak David Eichler (presented by Jonathan Granot)
Ariel Majcher Gamma-ray bursts and GRB080319B XXIVth IEEE-SPIE Joint Symposium on Photonics, Web Engineering, Electronics for Astronomy and High Energy.
GRB physics and cosmology with spectrum-energy correlation
What GRBs can bring to Particle Astrophysics
GRB-Supernova observations: State of the art
Photosphere Emission in Gamma-Ray Bursts
Tight Liso-Ep-Γ0 Relation of Long Gamma-Ray Bursts
Presentation transcript:

Lorenzo Amati INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Bologna

Gamma-Ray Bursts: brightest cosmol. sources  most of the flux detected from keV up to 1-2 MeV  measured rate (by an all-sky experiment on a LEO satellite): ~0.8 / day; estimated true rate ~2 / day  bimodal duration distribution  fluences (= av.flux * duration) typically of ~10 -7 – erg/cm 2 short long

 isotropic distribution of GRBs directions  paucity of weak events with respect to homogeneous distribution in euclidean space  hints to cosmological origin of GRBs -> would imply huge luminosity  but a “local” origin could not be excluded until 1997 !

 in 1997 discovery of afterglow emission by BeppoSAX  first X, optical, radio counterparts, host galaxies

 optical spectroscopy of afterglow and/or host galaxy –> first measurements of GRB redshift  redshifts higher than 0.1 and up to >6 -> GRB are cosmological  their isotropic equivalent radiated energy is huge (up to erg in a few tens of s !)  std. scenarios for long and short

 all GRBs with measured redshift (~130, including a few short GRB) lie at cosmological distances (z = – 6.4) (except for the peculiar GRB980425, z=0.0085)  isotropic luminosities and radiated energy are huge and span several orders of magnitude: GRB are not standard candles (unfortunately) Mean: Eiso = erg Are GRB standard candles ?

 jet angles derived from the achromatic break time, are of the order of few degrees  the collimation-corrected radiated energy spans the range ~5x10 40 – erg-> more clustered but still not standard  recent observations put in doubt jet interpretation of optical break

 GRB have huge luminosity, a redshift distribution extending far beyond SN Ia  high energy emission -> no extinction problems  but need to investigate their properties to find ways to standardize them (if possible)

 GRB F spectra typically show a peak at photon energy Ep  for GRB with known redshift it is possible to estimate the cosmological rest frame peak energy Ep,i and the radiated energy assuming isotropic emission, Eiso “Standardizing” GRB with spectrum-energy correlations log(Ep,i )= 2.52,  = 0.43 log(Eiso)= 1.0,  = 0.9

 Amati et al. (2002) analyzed a sample of BeppoSAX events with known redshift found evidence of a strong correlation between Ep,i and Eiso, highly significant  Further analysis with updated samples confirmed the correlation and extended it to the weakest and softest events (X-Ray Flashes, XRF)  Significant extra-Poissonian scatter of the data around the best fit power-law:  ext [log(Ep,i)] ~ 0.17 Amati et al., 2008

 redshift estimates available only for a small fraction of GRB occurred in the last 10 years based on optical spectroscopy  pseudo-redshift estimates for the large amount of GRB without measured redshift -> GRB luminosity function, star formation rate evolution up to z > 6, etc.  use of the Ep,i – Eiso correlation for pseudo-redshift: most simple method is to study the track in the Ep,i - Eiso plane ad a function of z  not precise z estimates and possible degeneracy for z > 1.4  anyway useful for low z GRB and in general when combined with optical  A first step: using E p,i – E iso correlation for z estimates

 the E p,i -E iso correlation becomes tighter when adding a third observable: jet opening angle (  jet -> E  = [1-cos(  jet )]*E iso (Ghirlanda et al. 2004) or “high signal time” T 0.45 (Firmani et al. 2006)  the logarithmic dispersion of these correlations is very low: can they be used to standardize GRB ?  jet angle inferred from break time in optical afterglow decay, while E p,i -E iso - T 0.45 correlation based on prompt emission properties only  A step forward: standardizing GRB with 3-parameters spectrum-energy correlations

 general purpouse: estimate c.l. contours in 2-param surface (e.g.  M -   )  general method: construct a chi-square statistics for a given correlation as a function of a couple cosmological parameters  method 1 – luminosity distance: fit the correlation and construct an Hubble diagram for each couple of cosmological parameters -> derive c.l. contours based on chi-square  Methods (e.g., Ghirlanda et al, Firmani et al., Dai et al., Zhang et al.) : E p,i = E p,obs x (1 + z) D l = D l (z, H 0,  M,  , …)

Ghirlanda et al., 2004  method 2 – minimum correlation scatter: for each couple of cosm.parameters compute Ep,i and Eiso (or E  ), fit the points with a pl and compute the chi-square -> derive c.l. contours based on chi-square surface  method 3: bayesian method assuming that the correlation exists and is unique Firmani et al. 2007

Ghirlanda, Ghisellini et al. 2005, 2006,2007  What can be obtained with 150 GRB with known z and Ep and complementarity with other probes (SN Ia, CMB)  complementary to SN Ia: extension to much higher z even when considering the future sample of SNAP (z < 1.7), cross check of results with different probes

 physics of prompt emission still not settled, various scenarios: SSM internal shocks, IC-dominated internal shocks, external shocks, photospheric emission dominated models, kinetic energy dominated fireball, poynting flux dominated fireball)  e.g., Ep,i  -2 L 1/2 t -1 for syncrotron emission from a power-law distribution of electrons generated in an internal shock (Zhang & Meszaros 2002, Ryde 2005); for Comptonized thermal emission  geometry of the jet (if assuming collimated emission) and viewing angle effects also may play a relevant role  Drawbacks: lack of solid physical explanation

 Drawbacks: lack of calibration  differently to SN Ia, there are no low-redshift GRB (only 1 at z correlations cannot be calibrated in a “cosmology independent” way  would need calibration with a good number of events at z neeed to substantial increase the number of GRB with estimates of redshift and Ep  Bayesian methods have been proposed to “cure” the circularity problem (e.g., Firmani et al., 2006), resulting in slightly reduced contours w/r to simple (and circularity free) scatter method (using L p,iso -E p,i -T 0.45 corr.)

 “Crisis” of 3-parameters spectrum-energy correlations  Recent debate on Swift outliers to the Ep-E  correlation (including both GRB with no break and a few GRB with chromatic break)  Recent evidence that the dispersion of the Lp-Ep-T0.45 correlation is significantly higher than thought before and comparable to the Ep,i-Eiso corr. Campana et al. 2007Rossi et al. 2008

 Using the simple E p,i -E iso correlation for cosmology  Based on only 2 observables: a) much higher number of GRB that can be used b) reduction of systematics  Evidence that a fraction of the extrinsic scatter of the E p,i -E iso correlation is due to choice of cosmological parameters used to compute E iso Amati et al Simple PL fit 70 GRB

 By quantifying the extrinsic scatter with a proper log-likelihood method,  M can be constrained to (68%) for a flat  CDM universe (  M = 1 excluded at 99.9% c.l.)  releasing assumption of flat universe still provides evidence of low  M, with a low sensitivity to    significant constraints on both  M and   (and likely on dark energy EOS) expected from sample enrichment and z extension by present and next GRB experiments (e.g., Swift, Konus_WIND, GLAST, SVOM)  completely independent on other cosmological probes (e.g., CMB, type Ia SN, BAO; clusters…) and free of circularity problems Amati et al REAL 70 REAL SIM.

 Given their huge luminosities and redshift distribution extending up to at least 6.3, GRB are potentially a very powerful tool for cosmology and complementary to other probes (CMB, SN Ia, BAO, clusters, etc.)  The use of spectrum-energy correlations to this purpouse is promising, but:  need to substantial increase of the # of GRB with known z and Ep (which will be realistically allowed by next GRB experiments: Swift+GLAST/GBM, SVOM,…)  need calibration with a good number of events at z < 0.01 or within a small range of redshift, in order to avoid circularity problem  need solid physical interpretation  identification and understanding of possible sub- classes of GRB not following correlationsConclusions

 GRB can be used as cosmological beacons for study of the IGM up to z > 6  Because of the association with the death of massive stars GRB allow the study the evolution of massive star formation and the evolution of their host galaxy ISM back to the early epochs of the Universe (z > 6) GRB as cosmological beacons EDGE Team

END OF THE TALK