Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM.

Slides:



Advertisements
Similar presentations
H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
Advertisements

Ming Zhu (JAC/NRC) P. P. Papadopoulos (Argelander Institute for Astronomy, Germany) Yu Gao (Purple Mountain Observatory, China) Ernie R. Seaquist (U. of.
The Two Tightest Correlations: FIR-RC and FIR-HCN Yu GAO Purple Mountain Observatory, Nanjing Chinese Academy of Sciences.
CO imaging surveys of nearby galaxies Nario Kuno Nobeyama Radio Observatory.
Molecular Gas, Dense Molecular Gas and the Star Formation Rate in Galaxies (near and far) P. Solomon Molecular Gas Mass as traced by CO emission and the.
The Kennicutt-Schmidt Star Formation Relation at z~2 Desika Narayanan Harvard-Smithsonian CfA Chris HaywardT.J. CoxLars Hernquist Harvard Carnegie.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
Dust and Stellar Emission of Nearby Galaxies in the KINGFISH Herschel Survey Ramin A. Skibba Charles W. Engelbracht, et al. I.
The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.
渦状銀河における GMC の進化と星形 成 Evolution of GMCs and star formation in spiral galaxies Nario Kuno Nobeyama Radio Observatory 1.NRO M33 All-Disk Survey of Giant.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Galactic and Extragalactic star formation M.Walmsley (Arcetri Observatory)
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Although there are regions of the galaxy M33 which show both high density neutral hydrogen gas and 24 micron emission, high density gas does not always.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
A Submillimeter study of the Magellanic Clouds Tetsuhiro Minamidani (Nagoya University) & NANTEN team ASTE team Mopra – ATNF team.
Sub-mm/mm astrophysics: How to probe molecular gas
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 18.
Star Formation Rate and Neutral Gas Content as a Function of Redshift and Environment Collaborators: Mike Pracy, Jayaram Chengalur, Frank Briggs, Matthew.
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
Studying the Atomic-Molecular Transition in the Local Group Erik Rosolowsky Radio Astronomy Lab, UC Berkeley Ringberg - May 19, 2004.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
Lighting the dark molecular gas using the MIR H 2 rotational lines Aditya Togi Advisor: JD Smith University of Toledo 19 th June
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Henize 2-10 IC 342 M 83 NGC 253 NGC 6946 COMPARISON OF GAS AND DUST COOLING RATES IN NEARBY GALAXIES E.Bayet : LRA-LERMA-ENS (Paris) IC 10 Antennae.
Star Formation: Near and Far Neal J. Evans II with Rob Kennicutt.
Interstellar Medium and Star Formation in the Andromeda Galaxy Andreas Schruba California Institute of Technology Adam Leroy, Karin Sandstrom, Fabian Walter,
The Gas Properties of Galaxies on and off of a Star-Forming Sequence David Schiminovich + GALEX Science Team Columbia University.
Effects of Dust on the Observed SEDs of Galaxies Andrew Schurer INAF/SISSA & MAGPOP.
Dusty Dark Nebulae and the Origin of Stellar Masses Colloquium: STScI April 08.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
The Irradiated and Stirred ISM of Active Galaxies Marco Spaans, Rowin Meijerink (Leiden), Frank Israel (Leiden), Edo Loenen (Leiden), Willem Baan (ASTRON),
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
MAGMA: The Magellanic Mopra Assessment Tony Wong University of Illinois at Urbana-Champaign Collaborators: Annie Hughes (Swinburne/ATNF), Erik Muller (Nagoya.
The shapes of the THINGS HI profiles Presented by : Ianjamasimanana Roger Supervisor : Erwin de Blok UNIVERSITY OF CAPE TOWN.
Interstellar Matter and Star Formation in the Magellanic Clouds François Boulanger (IAS) Collaborators: Caroline Bot (SSC), Emilie Habart (IAS), Monica.
CARMA Large Area Star-formation SurveY  Completing observations of 5 regions of square arcminutes with 7” angular resolution in the J=1-0 transitions.
1 On star-formation compactness & bulges: the ALMA view  IR (z~2) =  IR (z~0) x 6  IR (z~4) =  IR (z~0) x 12  IR (z) =  IR (z~0) x (1+z) 2.5 vs 
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
The reliability of [CII] as a SFR indicator Ilse De Looze, Suzanne Madden, Vianney Lebouteiller, Diane Cormier, Frédéric Galliano, Aurély Rémy, Maarten.
The Local Universe A CCAT perspective Christine Wilson McMaster University, Canada 7 January 20131AAS 221 – Long Beach, CA.
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Investigations of dust heating in M81, M83 and NGC 2403 with Herschel and Spitzer George J. Bendo Very Nearby Galaxies Survey.
HBT 28-Jun-2005 Henry Throop Department of Space Studies Southwest Research Institute (SwRI) Boulder, Colorado John Bally University of Colorado Portugal,
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
AST101 Lecture 20 The Parts of the Galaxy. Shape of the Galaxy.
Jet Propulsion Laboratory
Hi. My name is Alexia Lewis
 SPIRE/PACS guaranteed time programme.  Parallel Mode Observations at 100, 160, 250, 350 and 500µm simultaneously.  Each.
Star Formation and H2 in Damped Lya Clouds
Recontres de Moriond XXV La Thuile, March 2005 Recontres de Moriond XXV La Thuile, March 2005 Theoretical SEDs in Starbursts: SFRs in both the UV and IR.
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
The Birth of Stars and Planets in the Orion Nebula K. Smith (STScI)
Massive Star Formation under Different Z & Galactic Environment Rosie Chen (University of Virginia) Remy Indebetouw, You-Hua Chu, Robert Gruendl, Gerard.
HST HII regions & optical light Eva Schinnerer Max Planck Institute for Astronomy molecular gas (PAWS) 1 kpc Star Formation and ISM in Nearby Galaxies:
SOFIA and the ISM of Galaxies Xander Tielens & Jessie Dotson Presented by Eric Becklin.
AST101 Lecture 20 Our Galaxy Dissected. Shape of the Galaxy.
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Purple Mountain Obs. CAS CHINA 2005 LiJiang International Starburst Workshop The Dense Molecular Connection Between IR and RC Emission In Galaxies Fan.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
1 Lei Bai George Rieke Marcia Rieke Steward Observatory Infrared Luminosity Function of the Coma Cluster.
Studying ISM and star formation in M33 with ALMA Sachiko Onodera & NRO MAGiC Team: (M33 All-disk Survey of Giant Molecular Clouds) N. Kuno 1, T. Tosaki.
Studying Nearby Starbursts with HST
Are WE CORRECTLY Measuring the Star formation in galaxies?
The dust attenuation in the galaxy merger Mrk848
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
KENNICUTT-SCHMIDT RELATION VARIETY AND STAR-FORMING CLOUD FRACTION
Presentation transcript:

Shinya KomugiNAOJ Chile Observatory + Rie Miura, Sachiko Onodera, Tomoka Tosaki, Nario Kuno + many (NRO Legacy MAGiC team, ASTE team, AzTEC team) NRO UM Jul MAGiC IV : 星間物質の基本平面

Star formation relation within M33 Increased scatter at 100pc scale Effect of GMC evolution ? (e.g., Kawamura et al. 2009, Onodera et al. 2010) Onodera et al. 2010

・All but 1 SF region are 7Myr old log SFR=0.95 logΣ var (H 2 )-8.23 ・small 700pc σ =0.1 for varying Xco c.f.σ =0.5 in M51 (Liu+11) GMCs (SF regions) at a similar Evolution stage give tight SK laws Star formation relation within Taffy I (Komugi+ 2012) J=blue 、 H=green 、 Ks=red

Star formation Interstellar Radiation Field Interstellar Radiation Field Molecular gas (CO) Molecular gas (CO) Dust Opt.-Near IR “Dense” gas Xco metallicity temperature emissivity heating K-S law Gas/dust ratio IMF UV input extinction The ISM at GMC scales Hα, 24um 1.1 mm 12 CO(J=1-0) 12 CO(J=3-2) 2.1 um + time evolution

Interaction of ISM at 100pc in M33 12 NRO 45m Tosaki et al. (2011) Catalog in progress

Interaction of ISM at 100pc in M33 12 CO(J=3-2) Miura et al. (2012) 71 GMCs catalogued L co, r maj, r min, σ v, T mb Radius range 20 ~ 40

Interaction of ISM at 100pc in M33 1.1mm and dust temperature map ASTE and Spitzer 160um Komugi et al. (2011)

Interaction of ISM at 100pc in M33 57 GMCs at ~100pc resolution with 12 CO(J=1-0)  M 10 : total molecular gas 12 CO(J=3-2)  M 32 : dense molecular gas 1.1mm  M dust : dust mass (using T cold map and β=2) Ks band  K : measure of ISRF from old stellar pop. Hα, 24um  SFR : star formation rate (UV photon) Type  B, C, D : evolutionary stage

・ PC4 and PC5 have smallest variance, i.e. we can write PC4 = 0 PC5 = 0 ・ SFR, K, M d contains 99.3% of the information in PC logSFR logK logM d = 0 ± 0.43 logSFR = (2.4 ± 0.3) logM dust – (0.23 ± 0.06) K mag ± 1.2 scatter = 0.4 dex ・ SFR, M CO10, M CO32 contains 99.6% of the information in PC logM CO logM CO logSFR = 0 ± 0.29 logM 32 = (0.86 ± 0.06) logM 10 + (0.12 ± 0.02) logSFR ± 0.02 scatter = 0.1 dex

PC5 : SFR-M CO32 -M CO10 plane log M CO32 (M ◉ pc -2 ) log M CO10 (M ◉ pc -2 ) log SFR (M ◉ yr -1 pc -2 )

3D version of SK law, but strongest correlation is between CO32 and CO10.  SK law at 100 pc is better expressed as “CO32/CO10 ratio is modulated by SFR”  Consistent with “dense gas fraction is larger for clouds with more active SF” (Onodera+ 2012) PC5 : SFR-M CO32 -M CO10 plane

PC4 : SFR-M dust -K S plane log M dust (M ◉ pc -2 ) log SFR (M ◉ yr -1 pc -2 ) ISRF (K band mag.)

SFR-M dust tighter than SFR-M CO32 or SFR-M CO10  Dust traces molecular gas better ?? GMC evolution = movement in the plane; young GMC  2um dark, less dust, small SFR < 10Myr GMC  2um bright, range of dust and SFR > 10Myr GMC  intermediate in SFR, dust, 2um. PC4 : SFR-M dust - K S plane

summary Multi-parameter analysis of GMC in M33 2 most fundamental relations ; “Classical” KS law can be explained by combining these PCA can be a powerful tool to interpret the entangled relations in the ISM Needs verification in other galaxies  12CO + Paα survey of NGC300 ongoing logSFR = (2.4 ± 0.3) logM d – (0.23 ± 0.06) K mag ± 1.2scatter = 0.4 dex logM CO32 = (0.86 ± 0.06) logM CO10 + (0.12 ± 0.02) logSFR ± 0.02scatter = 0.1 dex