IMRank: Influence Maximization via Finding Self-Consistent Ranking

Slides:



Advertisements
Similar presentations
Date: 2014/05/06 Author: Michael Schuhmacher, Simon Paolo Ponzetto Source: WSDM’14 Advisor: Jia-ling Koh Speaker: Chen-Yu Huang Knowledge-based Graph Document.
Advertisements

Diversity Maximization Under Matroid Constraints Date : 2013/11/06 Source : KDD’13 Authors : Zeinab Abbassi, Vahab S. Mirrokni, Mayur Thakur Advisor :
Minimizing Seed Set for Viral Marketing Cheng Long & Raymond Chi-Wing Wong Presented by: Cheng Long 20-August-2011.
Linking Named Entity in Tweets with Knowledge Base via User Interest Modeling Date : 2014/01/22 Author : Wei Shen, Jianyong Wang, Ping Luo, Min Wang Source.
Spread of Influence through a Social Network Adapted from :
Maximizing the Spread of Influence through a Social Network
Date : 2014/04/01 Author : Zhung-Xun Liao, Yi-Chin Pan, Wen-Chih Peng, Po-Ruey Lei Source : CIKM’13 Advisor : Jia-ling Koh Speaker : Shao-Chun Peng.
Fault-Tolerant Target Detection in Sensor Networks Min Ding +, Dechang Chen *, Andrew Thaeler +, and Xiuzhen Cheng + + Department of Computer Science,
Maximizing the Spread of Influence through a Social Network
Suqi Cheng Research Center of Web Data Sciences & Engineering
Least Cost Rumor Blocking in Social networks Lidan Fan Computer Science Department the University of Texas at Dallas.
Maximizing the Spread of Influence through a Social Network By David Kempe, Jon Kleinberg, Eva Tardos Report by Joe Abrams.
1 Social Influence Analysis in Large-scale Networks Jie Tang 1, Jimeng Sun 2, Chi Wang 1, and Zi Yang 1 1 Dept. of Computer Science and Technology Tsinghua.
Maggie Zhou COMP 790 Data Mining Seminar, Spring 2011
Zdravko Markov and Daniel T. Larose, Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage, Wiley, Slides for Chapter 1:
Optimal Tuning of Continual Online Exploration in Reinforcement Learning Youssef Achbany, Francois Fouss, Luh Yen, Alain Pirotte & Marco Saerens Information.
Journal Status* Using the PageRank Algorithm to Rank Journals * J. Bollen, M. Rodriguez, H. Van de Sompel Scientometrics, Volume 69, n3, pp , 2006.
Simpath: An Efficient Algorithm for Influence Maximization under Linear Threshold Model Amit Goyal Wei Lu Laks V. S. Lakshmanan University of British Columbia.
Maximizing Product Adoption in Social Networks
Models of Influence in Online Social Networks
Viral Marketing for Dedicated Customers Presented by: Cheng Long 25 August, 2012.
Improving Coarsening and Interpolation for Algebraic Multigrid Jeff Butler Hans De Sterck Department of Applied Mathematics (In Collaboration with Ulrike.
Leveraging Conceptual Lexicon : Query Disambiguation using Proximity Information for Patent Retrieval Date : 2013/10/30 Author : Parvaz Mahdabi, Shima.
Personalized Influence Maximization on Social Networks
Deadline-sensitive Opportunistic Utility-based Routing in Cyclic Mobile Social Networks Mingjun Xiao a, Jie Wu b, He Huang c, Liusheng Huang a, and Wei.
Date : 2014/09/18 Author : Niket Tandon, Gerard de Melo, Fabian Suchanek, Gerhard Weikum Source : WSDM’14 Advisor : Jia-ling Koh Speaker : Shao-Chun Peng.
Information Spread and Information Maximization in Social Networks Xie Yiran 5.28.
Influence Maximization in Dynamic Social Networks Honglei Zhuang, Yihan Sun, Jie Tang, Jialin Zhang, Xiaoming Sun.
A Probabilistic Graphical Model for Joint Answer Ranking in Question Answering Jeongwoo Ko, Luo Si, Eric Nyberg (SIGIR ’ 07) Speaker: Cho, Chin Wei Advisor:
Thang N. Dinh, Dung T. Nguyen, My T. Thai Dept. of Computer & Information Science & Engineering University of Florida, Gainesville, FL Hypertext-2012,
Optimal resource assignment to maximize multistate network reliability for a computer network Yi-Kuei Lin, Cheng-Ta Yeh Advisor : Professor Frank Y. S.
December 7-10, 2013, Dallas, Texas
Feedback Effects between Similarity and Social Influence in Online Communities David Crandall, Dan Cosley, Daniel Huttenlocher, Jon Kleinberg, Siddharth.
Optimal Link Bombs are Uncoordinated Sibel Adali Tina Liu Malik Magdon-Ismail Rensselaer Polytechnic Institute.
Maximizing the Spread of Influence through a Social Network David Kempe, Jon Kleinberg, Eva Tardos Cornell University KDD 2003.
Maximizing the Spread of Influence through a Social Network Authors: David Kempe, Jon Kleinberg, É va Tardos KDD 2003.
Automatic Suggestion of Query-Rewrite Rules for Enterprise Search Date : 2013/08/13 Source : SIGIR’12 Authors : Zhuowei Bao, Benny Kimelfeld, Yunyao Li.
Learning the Structure of Related Tasks Presented by Lihan He Machine Learning Reading Group Duke University 02/03/2006 A. Niculescu-Mizil, R. Caruana.
Speaker : Yu-Hui Chen Authors : Dinuka A. Soysa, Denis Guangyin Chen, Oscar C. Au, and Amine Bermak From : 2013 IEEE Symposium on Computational Intelligence.
Online Social Networks and Media
Finding Experts Using Social Network Analysis 2007 IEEE/WIC/ACM International Conference on Web Intelligence Yupeng Fu, Rongjing Xiang, Yong Wang, Min.
Convergence of PageRank and HITS Algorithms Victor Boyarshinov Eric Anderson 12/5/02.
A Classification-based Approach to Question Answering in Discussion Boards Liangjie Hong, Brian D. Davison Lehigh University (SIGIR ’ 09) Speaker: Cho,
Date: 2012/08/21 Source: Zhong Zeng, Zhifeng Bao, Tok Wang Ling, Mong Li Lee (KEYS’12) Speaker: Er-Gang Liu Advisor: Dr. Jia-ling Koh 1.
Manuel Gomez Rodriguez Bernhard Schölkopf I NFLUENCE M AXIMIZATION IN C ONTINUOUS T IME D IFFUSION N ETWORKS , ICML ‘12.
CONTEXTUAL SEARCH AND NAME DISAMBIGUATION IN USING GRAPHS EINAT MINKOV, WILLIAM W. COHEN, ANDREW Y. NG SIGIR’06 Date: 2008/7/17 Advisor: Dr. Koh,
PERSONALIZED DIVERSIFICATION OF SEARCH RESULTS Date: 2013/04/15 Author: David Vallet, Pablo Castells Source: SIGIR’12 Advisor: Dr.Jia-ling, Koh Speaker:
Algorithms For Solving History Sensitive Cascade in Diffusion Networks Research Proposal Georgi Smilyanov, Maksim Tsikhanovich Advisor Dr Yu Zhang Trinity.
1 Finding Spread Blockers in Dynamic Networks (SNAKDD08)Habiba, Yintao Yu, Tanya Y., Berger-Wolf, Jared Saia Speaker: Hsu, Yu-wen Advisor: Dr. Koh, Jia-Ling.
Speaker : Yu-Hui Chen Authors : Dinuka A. Soysa, Denis Guangyin Chen, Oscar C. Au, and Amine Bermak From : 2013 IEEE Symposium on Computational Intelligence.
Root Cause Localization on Power Networks Zhen Chen, ECEE, Arizona State University Joint work with Kai Zhu and Lei Ying.
1 1 Stanford University 2 MPI for Biological Cybernetics 3 California Institute of Technology Inferring Networks of Diffusion and Influence Manuel Gomez.
Exploring Social Influence via Posterior Effect of Word-of-Mouth Recommendations Junming Huang, Xue-Qi Cheng, Hua-Wei Shen, Tao Zhou, Xiaolong Jin WSDM.
Biao Wang 1, Ge Chen 1, Luoyi Fu 1, Li Song 1, Xinbing Wang 1, Xue Liu 2 1 Shanghai Jiao Tong University 2 McGill University
1 Link Privacy in Social Networks Aleksandra Korolova, Rajeev Motwani, Shubha U. Nabar CIKM’08 Advisor: Dr. Koh, JiaLing Speaker: Li, HueiJyun Date: 2009/3/30.
QUERY-PERFORMANCE PREDICTION: SETTING THE EXPECTATIONS STRAIGHT Date : 2014/08/18 Author : Fiana Raiber, Oren Kurland Source : SIGIR’14 Advisor : Jia-ling.
Wenyu Zhang From Social Network Group
Independent Cascade Model and Linear Threshold Model
Greedy & Heuristic algorithms in Influence Maximization
Friend Recommendation with a Target User in Social Networking Services
Independent Cascade Model and Linear Threshold Model
Effective Social Network Quarantine with Minimal Isolation Costs
A Large Scale Prediction Engine for App Install Clicks and Conversions
Centrality Bias Measure for High Density QR Code Module Recognition
Fast Localization for Emergency Monitoring and Rescue in Disaster Scenarios Based on WSN SPEAKER:Jyun-Ying Yu ADVISOR:DR. Kai-Wei Ke DATE:2018/05/04.
Binghui Wang, Le Zhang, Neil Zhenqiang Gong
Graph-based Security and Privacy Analytics via Collective Classification with Joint Weight Learning and Propagation Binghui Wang, Jinyuan Jia, and Neil.
HeteroMed: Heterogeneous Information Network for Medical Diagnosis
Viral Marketing over Social Networks
Independent Cascade Model and Linear Threshold Model
Presentation transcript:

IMRank: Influence Maximization via Finding Self-Consistent Ranking Date : 2014/12/11 Author : Suqi Cheng, Huawei Shen, Junming Huang, Wei Chen, Xueqi Cheng Source : SIGIR’14 Advisor : Jia-ling Koh Speaker : Shao-Chun Peng

Outline Introduction Related Work Approach Experimental Conclusion Motivation purpose Related Work Approach Experimental Conclusion

Motivation Influence maximization, fundamental for word-of-mouth marketing and viral marketing expert finding online advertising and marketing

diffusion model Set of mathematical equations or formulas that attempts to estimate the spread of information (idea or rumor) or a contagious disease through a population.

 purpose find a set of seed nodes maximizing influence spread on social network

Outline Introduction Related Work Approach Experimental Conclusion

Related Work Greedy algorithms Heuristic algorithms Maximal Marginal influence spread High computational cost Heuristic algorithms Estimating influence spread unstable accuracy Marginal influence spread: Given a node set S ⊆ V and a node v ∈ V , the marginal influence spread of v upon S is defined as M(v|S) = I(S∪{v})−I(S).

Outline Introduction Related Work Approach Experimental Conclusion

Self-consistent solve the influence maximization problem through finding a desired self-consistent ranking Self-consistent ranking: A ranking r is a self-consistent ranking iff Mr(vri ) ≥ Mr(vrj ), ∀1 ≤ i < j ≤ n.

Framework Give a initial ranking and a social network IMRank self-consistent ranking Greedy strategy set of seed nodes maximizing influence spread

Initial ranking How to get a initial ranking Random Degree InversedDegree Strength PageRank

IMRank η(vrj , vri ) =

Calculate Mr(r) 1. Each node can only be activated by nodes ranked higher than it in the given ranking; 2. When a node could be activated by multiple nodes, higher-ranked node has higher priority to activate it.

Calculate Mr(r) Value i =5 i=4 i=3 i=2 Mr(vr1 )= (1+p(1,3)*(1+p(3,5)))+p(1,2)*(1+p(2,4)*(1+p(4,5)*(1-p(3,5)))) j=1 done Mr(vr2 )= (1-p(1,2))*(1+p(2,4)*(1+p(4,5)*(1-p(3,5)))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= (1+p(1,3)*(1+p(3,5)))+p(1,2)*(1+p(2,4)*(1+p(4,5)*(1-p(3,5)))) j=1 done Mr(vr2 )= (1-p(1,2))*(1+p(2,4)*(1+p(4,5)*(1-p(3,5)))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= (1+p(1,3)*(1+p(3,5)))+p(1,2)*(1+p(2,4)*(1+p(4,5)*(1-p(3,5)))) j=1 done Mr(vr2 )= (1-p(1,2))*(1+p(2,4)*(1+p(4,5)*(1-p(3,5)))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= (1+p(1,3)*(1+p(3,5)))+p(1,2)*(1+p(2,4)*(1+p(4,5)*(1-p(3,5)))) j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1+p(1,3)*(1+p(3,5)) j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1+p(1,3)*(1+p(3,5)) j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1+p(1,3)*(1+p(3,5)) j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1+p(1,3)*(1+p(3,5)) j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= (1-p*(1,3)(1+p(3,5)) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= (1-p(2,4))(1+p(4,5)*(1-p(3,5))) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 Value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= 1+p(2,4)*(1+p(4,5)*(1-p(3,5))) j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= 1+p(4,5)*(1-p(3,5)) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= 1+p(4,5)*(1-p(3,5)) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= 1+p(4,5)*(1-p(3,5)) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= 1+p(4,5)*(1-p(3,5)) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= 1+p(4,5)*(1-p(3,5)) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= 1+p(4,5)*(1-p(3,5)) j=4 Mr(vr5 )= (1-p(4,5))*(1-p(3,5)) j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5) j=3 X Mr(vr4 )= 1+p(4,5)*(1-p(3,5)) j=4 Mr(vr5 )= 1-p(3,5) j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 Mr(vr2 )= j=2 Mr(vr3 )= j=3 X Mr(vr4 )= j=4 Mr(vr5 )= j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= j=3 X Mr(vr4 )= j=4 Mr(vr5 )= j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5)*1 j=3 X Mr(vr4 )= j=4 Mr(vr5 )= 1-p(3,5)*1 j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5)*1 j=3 X Mr(vr4 )= j=4 Mr(vr5 )= j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= 1+p(3,5)*1 j=3 X Mr(vr4 )= j=4 Mr(vr5 )= 1-p(3,5)*1 j=5 value i =5 i=4 i=3 i=2 Mr(vr1 )= 1 j=1 done Mr(vr2 )= j=2 Mr(vr3 )= j=3 X Mr(vr4 )= j=4 Mr(vr5 )= j=5

Calculate Mr(r) 1. Each node can only be activated by nodes ranked higher than it in the given ranking; 2. When a node could be activated by multiple nodes, higher-ranked node has higher priority to activate it.

Outline Introduction Related Work Approach Experimental Conclusion

Dataset scientific collaboration network :High Energy Physics-Theory(HEPT) 15K nodes and 59K edges

network Weighted independent cascade (WIC) Each edge (u, v) is assigned a propagation probability p(u, v) = 1/dv, where dv is the indegree of node v. Trivalency independent cascade(TIC) [3] Each edge is assigned a propagation probability selected from {0.1,0.01,0.001} in a uniform random manner

Convergence of IMRank

Initial ranking

Dataset

Algorithms IMRank1 IMRank2 PMIA IRIE Degree as initial ranking and l = 1, 10 round IMRank2 Degree as initial ranking and l = 2, 10 round PMIA heuristic algorithm [3]. IRIE heuristic algorithm [10].

Result

Result

Outline Introduction Related Work Approach Experimental Conclusion

Conclusions prove the convergence of IMRank and analyze the impact of initial ranking Efficient iterative framework IMRank to explore the benefits of accurate greedy algorithms and efficient heuristic estimation of influence spread