Measuring Quantum Coherence in the Cooper-Pair Box

Slides:



Advertisements
Similar presentations
Superconducting qubits
Advertisements

Technological issues of superconducting charge qubits Oleg Astafiev Tsuyoshi Yamamoto Yasunobu Nakamura Jaw-Shen Tsai Dmitri Averin NEC Tsukuba - SUNY.
Quantum Computer Implementations
ABSTRACT Quasiparticle Trapping in Andreev Bound States Maciej Zgirski
Depts. of Applied Physics & Physics Yale University expt. Andreas Wallraff David Schuster Luigi Frunzio Andrew Houck Joe Schreier Hannes Majer Blake Johnson.
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Scaling up a Josephson Junction Quantum Computer Basic elements of quantum computer have been demonstrated 4-5 qubit algorithms within reach 8-10 likely.
High fidelity Josephson phase qubits winning the war (battle…) on decoherence “Quantum Integrated Circuit” – scalable Fidelity b reakthrough: single-shot.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
Quantum Computing with Trapped Ion Hyperfine Qubits.
Laterally confined Semiconductor Quantum dots Martin Ebner and Christoph Faigle.
Superconducting Flux Qubits: Coherence, Readout, and Coupling
Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東.
Dark Current Measurements of a Submillimeter Photon Detector John Teufel Department of Physics Yale University Yale: Minghao Shen Andrew Szymkowiak Konrad.
Depts. of Applied Physics & Physics Yale University expt. K. Lehnert L. Spietz D. Schuster B. Turek Chalmers University K.Bladh D. Gunnarsson P. Delsing.
Silicon-based Quantum Computation Cheuk Chi Lo Kinyip Phoa Dept. of EECS, UC Berkeley C191 Final Project Presentation Nov 30, 2005.
HTS Qubits and JJ's using BSCCO Design and Fabrication of HTS Qubits using BSCCO Suzanne Gildert.
Josephson Junctions, What are they?
Image courtesy of Keith Schwab.
Readout of superconducting flux qubits
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Microwave Spectroscopy of the radio- frequency Cooper Pair Transistor A. J. Ferguson, N. A. Court & R. G. Clark Centre for Quantum Computer Technology,
Quantenelektronik 1 Application of the impedance measurement technique for demonstration of an adiabatic quantum algorithm. M. Grajcar, Institute for Physical.
REVIEW OF SOLID STATE QUANTUM BIT CIRCUITS
Quantum Computing with Superconducting Circuits Rob Schoelkopf Yale Applied Physics QIS Workshop, Virginia April 23, 2009.
What NEC Did Engineered a two-state system Initialized the system Formed a superposition state Allowed the system to evolve Stopped the evolution Read.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Image courtesy of Keith Schwab.
Lecture 4 - Coulomb blockade & SET Fulton TA and Dolan GJ, Phys. Rev. Lett. 59 (1987) 109.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
1 0 Fluctuating environment -during free evolution -during driven evolution A -meter AC drive Decoherence of Josephson Qubits : G. Ithier et al.: Decoherence.

Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
Superconducting qubits
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Dynamics of a Resonator Coupled to a Superconducting Single-Electron Transistor Andrew Armour University of Nottingham.
SPEC, CEA Saclay (France),
Quantum Optics with Electrical Circuits: ‘Circuit QED’
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Quantum measurement and superconducting qubits Yuriy Makhlin (Landau Institute) STMP-09, St. Petersburg 2009, July 3-8.
What's super about superconducting qubits? Jens Koch Departments of Physics and Applied Physics, Yale University Chalmers University of Technology, Feb.
By Francesco Maddalena 500 nm. 1. Introduction To uphold Moore’s Law in the future a new generation of devices that fully operate in the “quantum realm”
Meet the transmon and his friends
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Quantum Computer 電機四 鄭仲鈞. Outline Quantum Computer Quantum Computing Implement of Quantum Computer Nowadays research of Quantum computer.
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
Macroscopic quantum dynamics in superconducting nanocircuits Jens Siewert Institut für Theoretische Physik, Universität Regensburg, Germany Imperial College,
Classical Control for Quantum Computers Mark Whitney, Nemanja Isailovic, Yatish Patel, John Kubiatowicz U.C. Berkeley.
Quantum computation with solid state devices - “Theoretical aspects of superconducting qubits” Quantum Computers, Algorithms and Chaos, Varenna 5-15 July.
Radio-frequency single-electron transistor (RF-SET) as a fast charge and position sensor 11/01/2005.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Single Electron Transistor (SET)
Mesoscopic Physics Introduction Prof. I.V.Krive lecture presentation Address: Svobody Sq. 4, 61022, Kharkiv, Ukraine, Rooms. 5-46, 7-36, Phone: +38(057)707.
The rf-SQUID Quantum Bit
Single Electron Transistor (SET) CgCg dot VgVg e-e- e-e- gate source drain channel A single electron transistor is similar to a normal transistor (below),
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Per Delsing Chalmers University of Technology Quantum Device Physics Interaction between artificial atoms and microwaves Experiments: IoChun Hoi, Chris.
Circuit QED Experiment
Superconducting Qubits
Mario Palma.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Superconducting qubit for quantum thermodynamics experiments
Cavity Quantum Electrodynamics for Superconducting Electrical Circuits
Presentation transcript:

Measuring Quantum Coherence in the Cooper-Pair Box Konrad Lehnert Depts. of Applied Physics & Physics Yale University Yale Lafe Spietz Ryan Held Ben Turek Rob Schoelkopf Chalmers University Kevin Bladh David Gunnarsson Per Delsing And discussions w/: M. Devoret, S. Girvin, A. Clerk, K. Nguyen The David and Lucile Packard Foundation Funding:

Can Electrical Circuits be ‘Quantum?’ Macroscopic Quantum Coherence: Cooper-pair box Y. Nakamura et al, Nature 1999 New Challenges: Understand and minimize decoherence Develop efficient quantum readout New Opportunities: Create artificial atoms Quantum computation

Quantum Circuits for Quantum Computing Classical bit Quantum bit (or “qubit”) Information as state of a two-level quantum system values , or values 0 or 1 superposition: Prediction: a 2,000 bit quantum computer = a conventional computer the size of universe.

Quantum Computing Ion Traps Liquid State NMR Nuclear Spins in Semiconductors Coherent Scalable Controllable Measurable Cooper-pair box SQUID’s How coherent is a Cooper-pair box?

Single Electron Transistor Measuring Box Vds Box SET Electrometer Cg Cc Cge Box Vg Vge SET Superconducting tunnel junction Al/AlOx/Al junctions; 50 x 50 nm e-beam lithography; double-angle evaporation Tc ~ 1.5 K

Cooper-pair Box Vg Vg

Cooper-pair Box as Quasi-spin 1/2 Measure charge Ground state 1 b c a a b c Excited state 0.5 E a b c

NMR of a Single Spin Single Spin ½ Quantum Measurement Vds Cgb Cc Cge Box Vgb Vge SET

Single-electron Transistor: Electrometer SET drain Vds Cge Vge Ids 10 nA source Electrometer input gate Vds 1 mV

Radio-Frequency Single Electron Transistor (RF-SET) Response to step in Vge Transformer SET single time trace RF Reflected power Electrometer input gate Measure RF power reflected from LC transformer 10-5 e/Hz1/2 charge noise Sub-electron sensitivity for > 100 MHz bandwidth Schoelkopf et al., (Science 1998)

Dilution refrigerator Small, Cold and Fast Microwaves Dilution refrigerator T = 15 mK 1 mm Millikelvins Nanometers

Experiment Diagram

Continuous Measurement of a Single Spin Measured continuously by SET Theory: Cooper-pair box ground state 1 0.5 2e 1e 0.5 1 Measurement must cause additional dephasing uncertainty principle Measurement may also mix states, drive transitions from ground state

Cooper-Pair Resonance Spectroscopy Cg Vapp 38 GHz Vapp=Vg+Vacsinwt 1 w/2p=38 GHz 0.5 1

Determination of Box Hamiltonian “SQUID box” to vary EJ Peak location 32 GHz 0.29 Vapp B 35 GHz 38 GHz 0.25 -2 -1 1 2 E Fit parameters:

Saturation of the Cooper Pair Resonance Photon Peak Height 0.5 37 GHz 39 GHz 0.2 0.235 0.265 Peak width Peak height 50% saturated

Excited-state Lifetime 0.15 e t<0 t>0 time 10 ms t=20 ms 1e 0.3e t=1.6 ms t<0 t=0.4 ms Peak height (e) 0.5 1 time 10 ms

Spontaneous Emission Environment Box SET Vds Cc Cg Vg 2e E Relaxation

Spontaneous Emission into Environment Spontaneous Emission: Fermi’s golden rule Cg Box Vg 2e

Electrometer Input Impedance Cg Cc Cg Cc Vg 2e 2e SET 2e 0.6 185 W Peak Height (e) 0.3 370 740 Electrometer Operating Point (Vg)

Conclusions Cooper-pair Box: A quantum two-level system worst-case coherence Box Hamiltonian determined with spectroscopy Long excited-state lifetime while continuously measured. Box measures electrometer input impedance

Box State Depends on Electrometer Bias Vds (mV) 250 290 420 470 760 1200

Conclusions RF-SET measures charge states of box Spectroscopic determination of Hamiltonian of box Dephasing time ~ 1 ns : (w/ continuous measurement) Long Excited-state lifetime >1 ms : Electrometer affects T1

Outline Charge quantization on a normal-metal island Single-electron Box Superconducting island as quantum two-level system Cooper-pair Box Spectroscopy of the Cooper-pair box Single-electron Tranistor (SET) measures box Box Measures SET Quantum Spectrum Analyzer

The Single-Electron Box island Cg Vg ne e Cj Rj Normal tunnel junction E Ec ne to ne+1 electrons Ec/4 ne=-1 ne=0 ne=1

Single-electron Box: Coulomb Staircase First demonstrated by Lafarge et al, ’91 (Saclay) Ec Ec/4 ne=-1 ne=0 ne=1 200 mK 16 mK Coulomb Staircase Thermally broadened 1 e e kT/Ec -1 -1 -0.5 0.5 1

Cooper-pair Box Spectrum: Electrostatic and Josephson EJ Ec n=-1 n=0 n=1 Condition: Two level System EJ /4Ec 2e 2e -0.5 0.5

Cooper-pair Box as Spin 1/2 Time scales w01 Larmor frequency 10-40 GHz T1 Excited state lifetime 0.1-10 ms WR Rabi frequency T2* Ensemble decoherence time

The Quantum Spectrum Analyzer Cmeas ? Vbias Measures all Noise Classical (symmetric) Quantum (asymmetric)

Cooper-pair Box Spectrum: Electrostatic and Quasi-particle Odd: single q.p. Even: no q.p. kT/4Ec 2e 2e-periodic Cooper-pair Staircase 2e -0.5 0.5

Cooper-Pair Resonance Spectroscopy Cg Vapp Vapp=Vg+Vacsinwt 1 38 GHz 35 GHz 0.5 1