May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 Studies on High QE PMT Tadashi Nomura (Kyoto U.) Contents –Motivation –Performance.

Slides:



Advertisements
Similar presentations
for Fusion Power Monitoring
Advertisements

DHC 101 Introduction to scintillation detectors. How many PE/MIP should we expect? Scintillation & Fluorescence WSFWSF PMTPEs  (MIP)
R&D of Strip/Block Scintillators E.P.Jacosalem, S.Iba, N.Nakajima, H.Ono, A.L.Sanchez, A.M.Bacala & H.Miyata GLD Calorimeter Group 8 th ACFA Workshop on.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan 1.Introduction 2.Recent.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Performance of MPPC using laser system Photon sensor KEK Niigata university, ILC calorimeter group Sayaka IBA, Hiroaki ONO, Paul.
KEK beam test H. Sakamoto. Purpose To optimize a concentration of the second dopant for scintillating fibers KEK beam test to study light yields for various.
KEK Test Results / Plans Akira SATO Osaka University, Japan.
Nustar/crystal simulations B. Genolini Crystal: CsI(Tl) (Saint Gobain), wrapped with reflector (VM2000, Tyveck?) Geometry:
Scintillator based muon upgrade / BELLE Super B Factory Workshop In Hawaii Jan 2004, Honolulu, Hawaii 1.Scintillator strip option 2.Geiger photodiodes.
Towards a Digital Hadron Calorimeter Vishnu V. Zutshi for NIU/NICADD Group.
1 Light Collection  Once light is produced in a scintillator it must collected, transported, and coupled to some device that can convert it into an electrical.
Photon detection Visible or near-visible wavelengths
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Peter Križan, Ljubljana March 17, 2006 Super B Workshop, Frascati Peter Križan University of Ljubljana and J. Stefan Institute Aerogel RICH and TOP: summary.
Measurement of 'intrinsic' properties of scintillating fibers H. Sakamoto Osaka University, Japan A.Sato M. Yoshida Y. Kuno Osaka Univ. K. Yoshimura KEK.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
Scintillation hodoscope with SiPM readout for the CLAS detector S. Stepanyan (JLAB) IEEE conference, Dresden, October 21, 2008.
THE FORWARD PROTON DETECTOR AT DZERO Gilvan Alves Lafex/CBPF 1) MOTIVATION 2) DETECTOR OPTIONS 3) FPD R&D 4) OUTLOOK Lishep 98 Lafex/CBPF Feb 17, 1998.
Electromagnetic Calorimeter for the CLAS12 Forward Detector S. Stepanyan (JLAB) Collaborating institutions: Yerevan Physics Institute (Armenia) James Madison.
R&D of MPPC for T2K experiment PD07 : Photosensor Workshop /6/28 (Thu) S.Gomi T.Nakaya M.Yokoyama H.Kawamuko ( Kyoto University ) T.Nakadaira.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
Tests WLS - Readout axial PET - Bari - Janvier 2007 AXIAL PET - HPD AXIAL COORDINATE RECONSTRUCTION WITH WLS STRIPS
Start Counter Collaboration Meeting September 2004 W. Boeglin FIU.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
1 MPPC update S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira (KEK) Nov KEK.
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
Timing properties of MCP-PMT K.Inami (Nagoya university, Japan) - Time resolution - Lifetime - Rate dependence Photon Detector Workshop at Kobe,
Increase in Photon Collection from a YAP:Ce Matrix Coupled to Wave Lenght Shifting Fibres N. Belcari a, A. Del Guerra a, A. Vaiano a, C. Damiani b, G.
KOPIO Catcher System RSVP Baseline Review Brookhaven National Laboratory April 20, 2005 Noboru Sasao / Tadashi Nomura (Kyoto U.)
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
MPPC status M.Taguchi(kyoto) T2K ND /7/7.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Catania 11 ICATPP october, 2009 Como 1/12 Catania Comparative measurements of the performances of four super bialkali large.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
DESY Beam Test of a EM Calorimeter Prototype with Extruded Scintillator Strips DongHee Kim Kyungpook National University Daegu, South Korea.
MAMUD Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, March 29, 2005 Purpose:  Provide pion – muon separation.
Multipixel Geiger mode photo-sensors (MRS APD’s) Yury Kudenko ISS meeting, KEK, 25 January 2006 INR, Moscow.
Status and R&D development of Photon Calorimeter G. Atoian, S. Dhawan, V. Issakov, A. Poblaguev, M. Zeller, Physics Department, Yale University, New Haven,
R&D of Calorimeter using Strip/Block Scintillators with SiPM
KOPIO Catcher System RSVP Preliminary Baseline Review Brookhaven National Laboratory April 6, 2005 Tadashi Nomura (Kyoto U.)
DESY Beam Test of a EM Calorimeter Prototype with Extruded Strip Scintillator DongHee Kim Kyungpook National University Daegu, South Korea.
Beta-ray test for strip scintillator readout MPPC GLD Cal group KEK 06/2/28 (Tue) Niigata university Sayaka IBA.
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
GLAST LAT ProjectACD CDR January 7 & 8, 2003 Section 4 Tile Detector Assemblies 1 GLAST Large Area Telescope: AntiCoincidence Detector (ACD) WBS
Chapter V Radiation Detectors.
CLAS12 Pre-shower H. Voskanyan (YerPhI)  R&D: Test measurements  Prototype CLAS Collaboration, CLAS12 TWG Meeting February 28, 2007, JLAB.
May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 KOPIO Beam Catcher Tadashi Nomura (Kyoto U.) Contents –What is Beam Catcher? –Concept.
PROPOSAL FOR A MUON VETO SYSTEM BEHIND THE HADRONIC CALORIMETER (MUV-3) Problems and requirements:  Expected total rate for 9.25 < R < 120 cm: 12.1 MHz:
Gamma Detector of Plastic Scintillator Oct. 2, 2009 IP-BSM Group 1.
The Multi-Pixel Photon Counter for the GLD Calorimeter Readout Jul Satoru Uozumi University of Tsukuba, Japan for the GLD Calorimeter.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Study of the cryogenic THGEM-GPM for the readout of scintillation light from liquid argon Xie Wenqing( 谢文庆 ), Fu Yidong( 付逸冬 ), Li Yulan( 李玉兰 ) Department.
Development of Multi-Pixel Photon Counters (1)
Fabio, Francesco, Francesco and Nicola INFN and University Bari
Scintillation Detectors in High Energy Physics
Frontier Detectors for Frontier Physics
GLAST Large Area Telescope:
大強度
PAN-2013: Radiation detectors
CLAS12 Forward Detector Element PCAL
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy
R&D of MPPC for T2K experiment
Efficiency Study of Prototype Scintillator for INGRID
Photomultiplier (PMT) Tubes
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy1 Studies on High QE PMT Tadashi Nomura (Kyoto U.) Contents –Motivation –Performance of H7422P-40 –Application to Scintillation counter with WLSF readout –Summary

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy2 Veto detectors surrounding Decay Region Motivation K   experiment needs hermetic veto system Major K L decay modes –K L   +  -  0 (13%) –K L   e  (39%)  These may fake the signal if charged particles are missed Cause of inefficiency –  - p   0 n (all neutrals and lost) – e + annihilated with materials  Detection before these interactions (i.e. with low energy deposition) reduces the inefficiency Signature = 2  + nothing

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy3 Simple Consideration of Inefficiency In case of loss due to  - p   0 n reaction Cross section  (CH),max ~100mb (at the resonance peak: E  ~170MeV) Required inefficiency < Energy deposit ~ 2MeV/cm  Edeposit before P int =10 -4 ~ 40keV 6x10 23 [n/mol] / 104[g/mol] x 8[CH pair/n] x 1[g/cm 3 ] x 100x [cm 2 ] x (thickness) =  thickness ~ 200  m, Energy deposit ~ 40keV (Note: Resultant  0 can be detected by photon veto detectors and thus inefficiency might be smaller) How many photoelectrons per 40keV can we obtain? High Quantum Efficiency (QE) PMT desired

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy4 Example: KOPIO Downstream CPV Beam pipe liner inside pre-radiator / calorimeter Counter should be inside vacuum, but it’s desirable to locate PMT outside  Long WaveLength-Shifting-Fiber (WLSF)  Small light yield  Need High QE PMT

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy5 High QE PMT : Hamamatsu H7422 GaAsP photocathode Sensitive area: 5mm in diameter Metal channel dynode structure Price ~1.8k$ H7422P-40 Measured QE using LEDs (relative to bi-alkali PMT) Bi-alkali (H7415) GaAsP (H7422) QE=30-40% for Green Expected QE Calculated from relative QE and bi-alkali catalog value Peak Wavelength of WLSF

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy6 Basic Properties of H7422 Stable upto 1MHz gain drops above 200kHz Sensitivity map Structure due to focusing mesh was seen… (~10% dip) Light yield: 100 p.e. Light yield: 1000 p.e. Linearity Linearity not so good (even within 100 p.e.) Gain~6x10 6 Rate dependence Gain~10 6 Improvement might be possible by optimizing base circuit

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy7 High QE PMT + Scintillator + WLSF Test configuration –PMT: H7422P-40 –Scintillator: EJ-212 (ELJEN) 3mm-thick, 1m-long –WLSF: Y11(200) (Kuraray) 1mm-diameter –Machined groove, 1cm-pitch, bundle 7 fibers –Wrapped by Aluminized mylar 90 Sr (Edep~580keV) Results: 70 p.e (both) with High QE PMT (x 3~3.5 larger than with Bi-alkali PMT) 70 p.e. / 0.58 MeV  120 p.e. / MeV

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy8 WLSF attenuation A S =9.0, S =1.0m A L =12.9, L =6.1m Attenuation in WLSF alone –with LED-excited, viewed by High QE PMT – L =6.1m – A L /A S ratio decreases if measured by bi-alkali PMT (longer wavelength ~ longer attenuation) Attenuation in Scinti + WLSF –Consistent well with WLSF alone  In case of 4m long WLSF (1m in Scinti + 3m outside vacuum), Light yield will be 46% of our test result  120 x 0.46 x 40x10 -3 = 2.2 p.e. / 40keV

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy9 Further Effort to Increase Light Yield Use thicker WLS fiber Better acceptance of primary scintillation lights –1.0mm  1.5mm diameter  30% increase expected (by our measurement) Use clear fiber to transport light Longer attenuation –1m WLSF in Scintillator + 3m clear fiber (outside vacuum)  50% improvement expected Connection ~90% x attenuation ~75%  68% cf. 46% attenuation for WLSF Need large area PMT cathode to read a bundle of 7 fibers 5mm  8mm diameter

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy10 Summary (1) High Quantum Efficiency PMT Hamamatsu H7422P-40 (GaAsP photocathode) Basic properties –QE : 30-40% for green light ~3 times larger than bi-alkali PMT –Linearity : not so good if we use “default” base circuit –Rate capability : stable upto 1MHz for 100 p.e. light Application to Scintillator + WLSF –120 p.e. / MeV (sum of both end) with 1m-long test counter ~3 times larger than bi-alkali PMT, as expected

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy11 Summary (2) Application to KOPIO DS Charged Particle Veto –In case we use 4m long WLS fiber, 2.2 p.e. / 40keV (sum of both end) will be expected –Threshold of 3 p.e. in both end, for example (  6 p.e. in total) inefficiency will be 3x10 -4 (without help by “backup” photon vetoes)  Effort to increase light yield 1mm  1.5mm diameter fiber ( x 1.3 expected ) Use clear fiber to transport long distance Change reflection material (Aluminized mylar  Al evaporation?)

May 26-27, 2005Tadashi Nomura (Kyoto U), KRare05 at Frascati, Italy12 Further High QE PMT issues Large sensitive area desired –In order to use thicker fibers  Need negotiation with the vendor (Hamamatsu) Linearity might be improved –Not so good with “default” base circuit  Optimize base circuit Life time of photocathode? –Degradation of GaAsP ?  Long-term test is planned