Turing -Recognizable vs. -Decidable

Slides:



Advertisements
Similar presentations
INHERENT LIMITATIONS OF COMPUTER PROGRAMS CSci 4011.
Advertisements

CS 461 – Nov. 9 Chomsky hierarchy of language classes –Review –Let’s find a language outside the TM world! –Hints: languages and TM are countable, but.
Turing -Recognizable vs. -Decidable
CSCI 4325 / 6339 Theory of Computation Zhixiang Chen Department of Computer Science University of Texas-Pan American.
1 COMP 382: Reasoning about algorithms Unit 9: Undecidability [Slides adapted from Amos Israeli’s]
1 CSC3130 Formal Languages and Automata Theory Tutorial 9 Undecidable Problem KN Hung SHB 1026.
Nathan Brunelle Department of Computer Science University of Virginia Theory of Computation CS3102 – Spring 2014 A tale.
Computability and Complexity 5-1 Classifying Problems Computability and Complexity Andrei Bulatov.
Algorithms Sipser 3.3 (pages ). CS 311 Mount Holyoke College 2 Computability Hilbert's Tenth Problem: Find “a process according to which it can.
More Turing Machines Sipser 3.2 (pages ). CS 311 Fall Multitape Turing Machines Formally, we need only change the transition function to.
Reducibility Sipser 5.1 (pages ). CS 311 Fall Reducibility.
The Halting Problem Sipser 4.2 (pages ). CS 311 Mount Holyoke College 2 Taking stock All languages Turing-recognizable Turing-decidable Context-free.
The Halting Problem Sipser 4.2 (pages ).
Mapping Reducibility Sipser 5.3 (pages ).
More Turing Machines Sipser 3.2 (pages ).
1 Introduction to Computability Theory Lecture13: Mapping Reductions Prof. Amos Israeli.
Mapping Reducibility Sipser 5.3 (pages ). CS 311 Fall Computable functions Definition 5.17: A function f:Σ*→Σ* is a computable function.
Fall 2004COMP 3351 Undecidable problems for Recursively enumerable languages continued…
Prof. Busch - LSU1 Decidable Languages. Prof. Busch - LSU2 Recall that: A language is Turing-Acceptable if there is a Turing machine that accepts Also.
FLAC Lecture 19 Turing Machines and Real Life * Reductions Mihai Budiu March 3, 2000.
Reducibility A reduction is a way of converting one problem into another problem in such a way that a solution to the second problem can be used to solve.
Costas Busch - RPI1 Undecidable problems for Recursively enumerable languages continued…
Fall 2004COMP 3351 The Chomsky Hierarchy. Fall 2004COMP 3352 Non-recursively enumerable Recursively-enumerable Recursive Context-sensitive Context-free.
Fall 2004COMP 3351 Reducibility. Fall 2004COMP 3352 Problem is reduced to problem If we can solve problem then we can solve problem.
Linear Bounded Automata LBAs
Homework #9 Solutions.
Automata & Formal Languages, Feodor F. Dragan, Kent State University 1 CHAPTER 5 Reducibility Contents Undecidable Problems from Language Theory.
Fall 2005Costas Busch - RPI1 Recursively Enumerable and Recursive Languages.
Courtesy Costas Busch - RPI1 Reducibility. Courtesy Costas Busch - RPI2 Problem is reduced to problem If we can solve problem then we can solve problem.
Theory of Computing Lecture 20 MAS 714 Hartmut Klauck.
Context-Free Grammars: Review Basic idea: set of production rules induces a language Finite set of variables: V = {V 1, V 2,..., V k } Finite set of terminals:
Nathan Brunelle Department of Computer Science University of Virginia Theory of Computation CS3102 – Spring 2014 A tale.
CSCI 2670 Introduction to Theory of Computing November 4, 2004.
The Halting Problem – Undecidable Languages Lecture 31 Section 4.2 Wed, Oct 31, 2007.
Turing Machines – Decidability Lecture 25 Section 3.1 Fri, Oct 19, 2007.
1 The Halting Problem and Decidability How powerful is a TM? Any program in a high level language can be simulated by a TM. Any algorithmic procedure carried.
MA/CSSE 474 Theory of Computation Enumerability Reduction.
Computability Construct TMs. Decidability. Preview: next class: diagonalization and Halting theorem.
1 Turing’s Thesis. 2 Turing’s thesis: Any computation carried out by mechanical means can be performed by a Turing Machine (1930)
 2005 SDU Lecture13 Reducibility — A methodology for proving un- decidability.
1Computer Sciences Department. Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER Reference 3Computer Sciences Department.
CS Master – Introduction to the Theory of Computation Jan Maluszynski - HT Lecture 7 Undecidability cont. Jan Maluszynski, IDA, 2007
CS 461 – Nov. 7 Decidability concepts –Countable = can number the elements  –Uncountable = numbering scheme impossible  –A TM undecidable –Language classes.
Computability Review homework. Video. Variations. Definitions. Enumerators. Hilbert's Problem. Algorithms. Summary Homework: Give formal definition of.
Overview of the theory of computation Episode 3 0 Turing machines The traditional concepts of computability, decidability and recursive enumerability.
Donghyun (David) Kim Department of Mathematics and Computer Science North Carolina Central University 1 Chapter 4 Decidability Some slides are in courtesy.
CS 461 – Oct. 28 TM applications –Recognize a language √ –Arithmetic √ –Enumerate a set –Encode a data structure or problem to solve Two kinds of TMs –Decider:
Decidability Decidable/Undecidable problems. Jaruloj Chongstitvatana Decidability2 Accepting: Definition Let T = (Q, , , , s) be a TM. T accepts.
1 The Chomsky Hierarchy. 2 Unrestricted Grammars: Productions String of variables and terminals String of variables and terminals.
Donghyun (David) Kim Department of Mathematics and Computer Science North Carolina Central University 1 Chapter 5 Reducibility Some slides are in courtesy.
Turing Machines Sections 17.6 – The Universal Turing Machine Problem: All our machines so far are hardwired. ENIAC
Recursively Enumerable and Recursive Languages. Definition: A language is recursively enumerable if some Turing machine accepts it.
Recursively Enumerable Languages
Theory of Computability
CSCI 2670 Introduction to Theory of Computing
CSCI 2670 Introduction to Theory of Computing
Reductions Costas Busch - LSU.
Theory of Computation CS302 – Spring 2009
Busch Complexity Lectures: Undecidable Problems (unsolvable problems)
Turing acceptable languages and Enumerators
CS154, Lecture 10: Rice’s Theorem, Oracle Machines
CSCI 2670 Introduction to Theory of Computing
Decidable Languages Costas Busch - LSU.
Decidability and Undecidability
Turing acceptable languages and Enumerators
Theory of Computability
More undecidable languages
Turing -Recognizable vs. -Decidable
Theory of Computability
Turing -Recognizable vs. -Decidable
Presentation transcript:

Turing -Recognizable vs. -Decidable √ Accept & halt ´ Reject & halt Never runs forever w→ Input Def: A language is Turing-decidable iff it is exactly the set of strings accepted by some always-halting TM. wÎΣ* = a b aa ab ba bb aaa aab aba abb baa bab bba bbb aaaa … M(w)Þ √ ´ L(M) = { a, aa, aaa, …} Note: M must always halt on every input.

Turing -Recognizable vs. -Decidable √ Accept & halt ´ Reject & halt ≡ ∞ Run forever w→ Input Def: A language is Turing-recognizable iff it is exactly the set of strings accepted by some Turing machine. wÎΣ* = a b aa ab ba bb aaa aab aba abb baa bab bba bbb aaaa … M(w)Þ √ ´ ∞ L(M) = { a, aa, aaa, …} Note: M can run forever on an input, which is implicitly a reject (since it is not an accept).

Recognition vs. Enumeration Def: “Decidable” means “Turing-decidable” “Recognizable” means “Turing-recognizable” Theorem: Every decidable language is also recognizable. Theorem: Some recognizable languages are not decidable. Ex: The halting problem is recognizable but not decidable. Note: Decidability is a special case of recognizability. Note: It is easier to recognize than to decide.

Famous Deciders “A wrong decision is better than indecision.” “I'm the decider, and I decide what is best.”

Famous Deciders

Recognition and Enumeration Def: An “enumerator” Turing machine for a language L prints out precisely all strings of L on its output tape. b $ a Note: The order of enumeration may be arbitrary. Theorem: If a language is decidable, it can be enumerated in lexicographic order by some Turing machine. Theorem: If a language can be enumerated in lexicographic order by some TM, it is decidable.

Recognition and Enumeration Def: An “enumerator” Turing machine for a language L prints out precisely all strings of L on its output tape. b $ a Note: The order of enumeration may be arbitrary. Theorem: If a language is recognizable, then it can be enumerated by some Turing machine. Theorem: If a language can be enumerated by some TM, then it is recognizable.

√ ´ Decidability Accept & halt Reject & halt Never runs forever w→ Input Def: A language is Turing-decidable iff it is exactly the set of strings accepted by some always-halting TM. Theorem: The finite languages are decidable. Theorem: The regular languages are decidable. Theorem: The context-free languages are decidable.

A “Simple” Example Let S = {x3 + y3 + z3 | x, y, z Î ℤ } Q: Is S infinite? A: Yes, since S contains all cubes. Q: Is S Turing-recognizable? A: Yes, since dovetailing TM can enumerate S. Q: Is S Turing-decidable? A: Unknown! Q: Is 29ÎS? A: Yes, since 33+13+13=29 Q: Is 30ÎS? A: Yes, since (2220422932)3+(-2218888517)3+(-283059965)3=30 Q: Is 33ÎS? Theorem [Matiyasevich, 1970]: Hilbert’s 10th problem (1900), namely of determining whether a given Diophantine (i.e., multi-variable polynomial) equation has any integer solutions, is not decidable.

Reducibilities computable function/map ƒ:å*®å* where "w wÎA Û ƒ(w)ÎB Def: A language A is reducible to a language B if computable function/map ƒ:å*®å* where "w wÎA Û ƒ(w)ÎB Note: ƒ is called a “reduction” of A to B Denotation: A £ B Intuitively, A is “no harder” than B

Reducibilities computable function/map ƒ:å*®å* where "w wÎA Û ƒ(w)ÎB Def: A language A is reducible to a language B if computable function/map ƒ:å*®å* where "w wÎA Û ƒ(w)ÎB Theorem: If A £ B and B is decidable then A is decidable. Theorem: If A £ B and A is undecidable then B is undecidable. Note: be very careful about the direction!

Reduction Example 1 x Note: M’ is not run! Def: Let He be the halting problem for TMs running on w=e. “Does TM M halt on e?” He = { <M>Îå*| M(e) halts } Theorem: He is not decidable. Proof: Reduction from the Halting Problem H: Given an arbitrary TM M and input w, construct new TM M’ that if it ran on input x, it would: Overwrite x with the fixed w on tape; Simulate M on the fixed input w; Accept Û M accepts w. Note: M’ halts on e (and on any xÎå*) Û M halts on w. A decider (oracle) for He can thus be used to decide H! Since H is undecidable, He must be undecidable also. x M’ Ignore x Simulate M on w If M(w) halts then halt Note: M’ is not run!