Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk.

Slides:



Advertisements
Similar presentations
Introduction to Plasma-Surface Interactions Lecture 6 Divertors.
Advertisements

Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Conference on Computational Physics 30 August 2006 Transport Simulation for the Scrape-Off Layer and Divertor Plasmas in KSTAR Tokamak S. S. Kim and S.
Self consistent ion trajectories in electron shading damage T.G. Madziwa, F.F. Chen & D. Arnush UCLA Electrical Engineering ltptl November 2002.
BUILD-UP SIMULATIONS FOR DAFNE WIGGLER W/ ELECTRODES Theo Demma.
PIII for Hydrogen Storage
Numerical investigations of a cylindrical Hall thruster K. Matyash, R. Schneider, O. Kalentev Greifswald University, Greifswald, D-17487, Germany Y. Raitses,
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
1/13 T. Inoue NEUTRAL BEAM INJECTION R&D on Ion Sources and Accelerators FT/1-2Ra: 1 MeV accelerator and uniformity R&D on a High Energy Accelerator and.
MARS15 Simulations of the MERIT Mercury Target Experiment Fermilab March 18, Neutrino Factory and Muon Collider Collaboration meeting Sergei.
Analysis of instrumental effects in HIBP equilibrium potential profile measurements on the MST-RFP Xiaolin Zhang Plasma Dynamics Lab, Rensselaer Polytechnic.
Extrapolation vs. MHD modeling Hardi Peter Kiepenheuer-Institut Freiburg, Germany Contribution to the discussions at the SDO workshop / Monterey Feb 2006.
Plasma Dynamics Lab HIBP Abstract Measurements of the radial equilibrium potential profiles have been successfully obtained with a Heavy Ion Beam Probe.
Outline (HIBP) diagnostics in the MST-RFP Relationship of equilibrium potential measurements with plasma parameters Simulation with a finite-sized beam.
Surface and volume production of negative ions in a low-pressure plasma E. Stoffels, W.W. Stoffels, V.M. Kroutilina*, H.-E. Wagner* and J. Meichsner*,
Plasma Kinetics around a Dust Grain in an Ion Flow N F Cramer and S V Vladimirov, School of Physics, University of Sydney, S A Maiorov, General Physics.
Development and validation of numerical models for the optimization of magnetic field configurations in fusion devices Nicolò Marconato Consorzio RFX,
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Proposed injection of polarized He3+ ions into EBIS trap with slanted electrostatic mirror* A.Pikin, A. Zelenski, A. Kponou, J. Alessi, E. Beebe, K. Prelec,
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
Particle-in-Cell Modeling of Rf Breakdown in Accelerating Structures and Waveguides Valery Dolgashev, SLAC National Accelerator Laboratory Breakdown physics.
Shu Nishioka Faculty of Science and Technology, Keio Univ.
Ursel Fantz for the IPP-NNBI Team 16 th ICIS, New York City, USAAugust 23-28, 2015 Towards 20 A Negative Hydrogen Ion Beams for Up to 1 hour: Achievements.
PIC simulations of the propagation of type-1 ELM-produced energetic particles on the SOL of JET D. Tskhakaya 1, *, A. Loarte 2, S. Kuhn 1, and W. Fundamenski.
1 Simulation of energetic-particle behavior in Spherical Tokamak Mou Maolin Supervisor : Z.T. Wang, C.J.Tang The Second A3 Foresight Workshop on Spherical.
Study of H - ion extraction and beam optics using the 2D3V and 3D3V PIC method K. Miyamoto 1), S. Nishioka 2), S. Okuda 3), I. Goto 2), A. Hatayama 2)
Negative Ion Production and Beam Extraction Processes in a Large Ion Source K. Tsumori1,2, K. Ikeda1, H. Nakano1,2, M. Kisaki1, S. Geng2, M. Wada3, K.
Chicago, July 22-23, 2002DARPA Simbiosys Review 1 Monte Carlo Particle Simulation of Ionic Channels Trudy van der Straaten Umberto Ravaioli Beckman Institute.
Particle-based Model of full-size ITER-relevant Negative Ion Source
Negative Ions in IEC Devices David R. Boris 2009 US-Japan IEC Workshop 12 th October, 2009 This work performed at The University of Wisconsin Fusion Technology.
Optimum Plasma Grid Bias in a Negative Hydrogen Ion Source Operation with Caesium M. Bacal 1, M. Sasao 2, M. Wada 3, R. McAdams 4 1 UPMC, LPP, Ecole Polytechnique,
Semion System Retarding Field Ion Energy Analyzer “
Introduction to Plasma- Surface Interactions Lecture 3 Atomic and Molecular Processes.
Ion Energy Distributions from a Permanent-Magnet Helicon Thruster Francis F. Chen, UCLA Low Temperature Plasma Physics Webinar, January 17, 2014.
EAST Data processing of divertor probes on EAST Jun Wang, Jiafeng Chang, Guosheng Xu, Wei Zhang, Tingfeng Ming, Siye Ding Institute of Plasma Physics,
INFSO-RI Enabling Grids for E-sciencE Workflows in Fusion applications José Luis Vázquez-Poletti Universidad.
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
Investigation of the Boundary Layer during the Transition from Volume to Surface Dominated H − Production at the BATMAN Test Facility Christian Wimmer,
Damping of the dust particle oscillations at very low neutral pressure M. Pustylnik, N. Ohno, S.Takamura, R. Smirnov.
TPC ExB distortion at LHC-ALICE experiment Yasuto Hori for the ALICE-TPC collaboration Center for Nuclear Study, University of Tokyo 1.
Erosion/redeposition analysis of CMOD Molybdenum divertor and NSTX Liquid Lithium Divertor J.N. Brooks, J.P. Allain Purdue University PFC Meeting MIT,
RPC Design Studies Gabriel Stoicea, NIPNE-HH, Bucharest CBM Software Week GSI-Darmstadt May 10, 2004.
CONTROL OF ELECTRON ENERGY DISTRIBUTIONS THROUGH INTERACTION OF ELECTRON BEAMS AND THE BULK IN CAPACITIVELY COUPLED PLASMAS* Sang-Heon Song a) and Mark.
The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M.
RF source, volume and caesiated extraction simulations (e-dump)
of magnetized discharge plasmas: fluid electrons + particle ions
Laboratory photo-ionized plasma David Yanuka. Introduction  Photo-ionized plasmas are common in astrophysical environments  Typically near strong sources.
Numerical Model of an Internal Pellet Target O. Bezshyyko *, K. Bezshyyko *, A. Dolinskii †,I. Kadenko *, R. Yermolenko *, V. Ziemann ¶ * Nuclear Physics.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma Dmytro Sydorenko University of Alberta,
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
Acceleration of 1 MeV H - ion beams at ITER NB relevant high current density Takashi INOUE M. Taniguchi, M. Kashiwagi, N. Umeda, H. Tobari, M. Dairaku,
-200kV -400kV -600kV -800kV -1MV Acceleration of 1 MeV H - ion beams at ITER NB relevant high current density Takashi INOUE, M. Taniguchi, M. Kashiwagi,
______ APPLICATION TO WAKEFIELD ACCELERATORS EAAC Workshop – Elba – June juillet 2016 | PAGE 1 CEA | 10 AVRIL 2012 X. Davoine 1, R. Lehe 2, A.
Unstructured Meshing Tools for Fusion Plasma Simulations
R.W. Assmann, V. Boccone, F. Cerutti, M. Huhtinen, A. Mereghetti
Study of Beam Properties at SECRAL and The Solenoid Pre-focusing LEBT
Seok-geun Lee, Young-hwa An, Y.S. Hwang
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
DOE Plasma Science Center Control of Plasma Kinetics
17th International Conference on Ion Sources
Finite difference code for 3D edge modelling
PANDA Collaboration Meeting
ArcPIC2D update: Arc spreading through flat emission Kyrre N
Dipole Antennas Driven at High Voltages in the Plasmasphere
PIV Investigation of EHD Flow Caused by Field-enhanced Dissociation
November 14, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
November 7, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
Presentation transcript:

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Recent state and progress in negative ion modeling by means ONIX code Mochalskyy Serhiy 1, Dirk Wünderlich 1, Benjamin Ruf 1, Peter Franzen 1 Ursel Fanz 1 and Tiberiu Minea 2 1 Max-Planck-Institut fuer Plasmaphysik EURATOM Association Boltzmannstr. 2,D Garching 2 LPGP, Univerisity Paris-Sud, CNRS F Orsay, France

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Outline Introduction Code improvement Code validation Code benchmarking Realistic parameters Results Conclusions and future plans 2/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Introduction: Negative ion plasma source system Driver Expansion region Extraction region NI surface and volume production The goal is to produce negative ion 48A H - (40A D - ) (j~20mA/cm 2 ) beam with I NI /I e ~1 at low pressure 0.6pa during continuous 1 hour operation. 3/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Introduction: ONIX (Orsay Negative Ions eXtraction) code  3D Particle-in-Cell Monte Carlo Collision electrostatic code specially developed for modeling NI production and following extraction from ITER NBI plasma source.  Fully paralellized via MPI using domain and particle decomposition techniques.  Able to deal with complex geometries as in the case of the extraction aperture. Simulation domain 19 mm 14 mm Plasma grid Extraction grid 4/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code improvement: Second order charge and E field assignment routine (1) First order Potential distribution Second order Potential distribution E(x) distribution P (V) Ex (V/cm) 5/32 x (mm) y (mm)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code improvement: Second order charge and E field assignment routine (2) First order Second order E(z) distribution Ex ( E(y) distribution Ey (V/cm) Ez (V/cm) 6/32 x (mm) y (mm)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code improvement: NI flux from PG (1) – injection method Trajectories of NI Flux at the given x plane Z (mm) y (mm) 7/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code improvement: NI flux from PG (2) – extracted electron and NI current Extracted NI currentExtracted e current 8/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code improvement: NI flux from PG (3) – potential well in vicinity to PG Old routine (normal injection, 1eV) New routine (random injection, 1eV) New routine (random injection, random energy eV) 9/32 X (mm) PG X (mm) y (mm) Potential (V)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code improvement: Addition to the simulation H 3 + ion and H - in the volume H 3 + density y (mm) H - from volume density Y (mm) n H3+ (m -3 ) Extracted electron and NI current 10/32 n H3+ (m -3 ) PG

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code validation: Potential well test in simplified model Potential well test Potential sheath test X (mm) Potential (V) X (mm) Density (m -3 ) 11/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, V -5V -10V 0V FIG. 10. Schematic of possible steady-state plasma potential profiles near a positively biased plate. Curve A corresponds to a large plate. Curve B corresponds to a small plate. Noah Hershkowitzb, Phys. Of Plasma (2005) Code validation: Potential well test in simplified model (2) Negative bias 0V 5V 10V 12/32 Potential (V) x (mm) Positive bias

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code validation: different mesh size (real domain) Electrons current 13/32 PG x (mm) y (mm) Potential (V)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code benchmark: ONIX vs KOBRA3D 2 completely different codes with different approaches: 1) ONIX – uses plasma parameters (density, temperature,…) to calculate the extraction current and meniscus shape; 2) KOBRA 3D –uses the extraction current to calculate the potential and meniscus shape PI extraction test (2 runs) Density 0.8, 1.6,*10 17 m -3, e:100%, H + :100%; T e =2eV, T PI =1eV Extraction potential: -5kV; B field is switch off, no collisions PG aperture 8 mm diameter 14/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Code benchmark: ONIX vs KOBRA3D (2) PI extraction test (4 runs) Density 0.8, 1.6, 2.4, 3.2*10 17 m -3, e:100%, H + :100%; T e =2eV, T PI =1eV Extraction potential: -5kV; B field is switch off, no collisions PG aperture 8 mm diameter and 4mm length (2mm to PG knife and 2 mm after) ONIX KOBRA3D 15/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Realistic parameters: Magnetic field map 16/32 Filter field Deflecting field axial x direction vertical z direction

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Realistic parameters: Magnetic field map  Complete 3D magnetic field structure and thus 3D model is necessary to perform realistic simulation of NI extraction. Filter field Deflecting field axial x direction vertical z direction BxBx PG BzBz 17/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Realistic parameters: Magnetic field map ByBy 18/32 Filter field Deflecting field axial x direction vertical z direction

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Realistic parameters: Magnetic field map ByBy BzBz BxBx 19/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Realistic parameters: Plasma parameters in ONIX simulations Probe measurements ONIX NI emission rate BACON Full 3D magnetic field map 3D field simulation Geometry of the plasma grid Engineering specification OES CRDS n=3*10 17 m -3 n e =90%; n NI =10%, n H+ =40%, n H2+ =40%, n H3+ =20% T e =2, T H- =0.1,T H+ =0.8, T H2+ =0.1, T H3+ =0.1 (eV) j NI,PG =660A/m 2 n H =1*10 19 m -3, T H =0.8eV n H2 =4*10 19, T H2 =0.1eV 20/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Typical evolution of extracted NI currents  NI from the surface is dominant;  NI current from the inner surface of the PG is higher than one from outer side;  Co-extracted electron current ~3.5 times higher than total NI current in no PG bias test. Conical PG surface flat PG surface PG ONIX resultsBATMAN results (no PG bias) 21/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Limitation of the NI extraction Potential distribution in vicinity to PG PG Potential (V) 22/32 x (mm) y (mm)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Potential at the wall Emission rate ~250A/m2 (~-3V) Emission rate ~800A/m2 (~-13V) Emission rate ~2000A/m2 (~-20V) 23/32 x (mm) PG x (mm) y (mm) Potential (V)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Limitation of the NI extraction NI density produced from the conical surface of PG NI density produced from the flat surface of PG NI density produced at the volume Results: Total NI density along domain 24/32 x (mm) y (mm) Density (m -3 ) PG

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Ion –Ion plasma calculation (NI current) No B field With B field 25/32 z vertical direction y horizontal direction current (mA)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Ion –Ion plasma calculation (NI density distribution) No B field With B field x (mm) y (mm) 26/32 Density (m -3 )

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Ion –Ion plasma calculation (e current) No B field With B field 27/32 z vertical direction y horizontal direction z vertical direction y horizontal direction current (mA)

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Ion –Ion plasma calculation (e density distribution) No B field With B field x (mm) y (mm) 28/32 Density (m -3 )

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Ion –Ion plasma calculation (H + density distribution - meniscus) No B field With B field 29/32 x (mm) y (mm) Density (m -3 )

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Ion-ion plasma simulations (5 runs) e current densityNI current density 30/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Results: Meniscus shape for several ion-ion plasmas (5 runs) H + density 95:5=e:NI (%) 75:25 50:50 25:75 5:95 PG 31/32

Mochalskyy Serhiy NI modeling workshop, Chiba, Japan, 2013 Thank you for your attention Project is supported by the Alexander von Humboldt foundation 32/32