Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Chemical and Physical Structures of Massive Star Forming Regions Hideko Nomura, Tom Millar (UMIST) ABSTRUCT We have made self-consistent models of the.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Deciphering Ancient Terrsa 20 Apr 2010 Low-metallicity star formation and Pop III-II transition Kazu Omukai (Kyoto U.) Collaborators: Naoki.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust and Molecules in Early Galaxies: Prediction and Strategy for Observations Tsutomu T. TAKEUCHI Laboratoire d’Astrophysique de Marseille, FRANCE Part.
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
高赤方偏移クェーサーの 星間ダスト進化と減光曲線 (Evolution of grain size distribution in high-redshift quasars: integrating large amounts of dust and unusual extinction curves)
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
極めて金属量の低い星形成ガス雲 中でのダスト成長と低質量星の形 成 Nozawa et al. (2012, ApJ, 756, L35) 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 2012/09/19 共同研究者 : 小笹 隆司(北海道大学)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Dust Properties in Metal-Poor Environments Observed by AKARI Hiroyuki Hirashita Hiroyuki Hirashita (ASIAA, Taiwan) H. Kaneda (ISAS), T. Onaka (Univ. Tokyo),
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Star Formation and H2 in Damped Lya Clouds
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
A modest overview of HIGH-REDSHIFT DUST Simona Gallerani
NAOJ, Division of theoretical astronomy
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
低金属量銀河の星形成モード (Nagoya University) L. K. Hunt (Firenze)
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa, A. Habe (Hokkaido Univ.), Eli Dwek ( NASA ) H. Umeda ( Univ. of Tokyo ), N. Tominaga ( NAOJ ) K. Maeda ( IPMU ), K. Nomoto ( IPMU/Univ. of Tokyo)

Contents 1. Introduction 2. Dust formation in primordial SNe 3. Dust evolution in primordial SNRs 4. Extinction curve expected at high-z 2

・ The presence of large amounts of dust grains with mass of >10^8 M sun has been confirmed for ~30% of z > 5 quasars (Bertoldi et al. 2003; Priddey et al. 2003; Robson et al. 2004; Beelen et al. 2006; Wang et al. 2008a, 2008b) 1-1. A large amount of dust at z > 5 Robson et al. (2004, MNRAS, 351, L29) SDSS J at z=6.4 a rapid enrichment with dust formed in the ejecta of SNe M sun of dust per SN is required to form to explain a large content of dust at high-z galaxies (Morgan & Edmunds 2003, Maiolino et al. 2006; Dwek et al. 2007) 40 K, β=2 180 K, β=0 L IR >10^13 L sun

1-2. Extinction curves at high-z Maiolino et al. (2004, Nature, 431, 533) Broad absorption line (BAL) quasars at low-z ➔ reddened by dust SDSS J at z=6.2 Source and evolution of dust at high redshift (z > 5) are different from those at low redshift (z < 4) GRB at z=6.3 Stratta et al. (2007, ApJ, 661, L9)

1-3. Role of dust in the early universe ・ Dust has great impacts on the formation processes of stars - forming molecules (mainly H 2 ) on the surface - providing additional cooling pathways of gas through thermal emission (e.g., Omukai et al. 2005, Schneider et al. 2006) ・ Dust absorbs stellar light and re-emits it by thermal radiation ➔ plays a crucial role in interpreting the SFR and the IMF of the early generation of stars from observations We aim at revealing the composition and size, amount of dust by treating self-consistently the formation and destruction processes of dust It is essential to clarify the properties of dust in the early epoch of the universe!

at ~1 days H-envelope He-core NS or BH He–layer (C>O) O–Ne-Mg layer Si–S layer Fe–Ni layer Dust formation at ~1-3 years after explosion 2. Dust Formation in primordial SNe

2-1. Calculations of dust formation ○ nucleation and grain growth theory (Kozasa & Hasegawa 1987) ○ models of Pop III SNe (Umeda & Nomoto 2002) - SNe II : M pr = 13, 20, 25, 30 M sun (E 51 =1) - PISNe : M pr = 170 M sun (E 51 =20), 200 M sun (E 51 =28) ○ formation of CO and SiO molecules ➔ complete ○ time evolution of gas temperature - derived by the radiative transport calculations taking account of energy deposition from 56 Ni and 56 Co ○ mixing of elements within the He-core - unmixed case (onion-like composition) - uniformly mixed case (retaining the density profile)

2-2. Dust formed in the unmixed ejecta ・ In the unmixed ejecta, various dust species form, reflecting the difference of elemental composition in each layer ・ C, SiO2, and Fe grains have lognormal-like size distribution, while the other grains have power-law-like size distribution

2-3. Total mass of dust formed ・ Total dust mass increases with increasing progenitor mass SNe II : M dust = M sun, f dep = M dust / M metal = PISNe : M dust = M sun, f dep = M dust / M metal = SNe II (Nozawa et al. 2003, ApJ, 598, 785)

FS He core RS CD T = (1-2) x10 4 K n H = cm Dust Evolution in Primordial SNRs

3-1. Calculation of dust destruction ○ SN ejecta models (Umeda & Nomoto 2002) ・ SNe II : M pr =13, 20, 25, 30 Msun (E 51 =1) ・ PISNe : M pr =170 (E 51 =20), 200 Msun (E 51 =28) ○ The ambient medium (homogenious) ・ gas temperature ; T = 10 4 K ・ gas density ; n H,0 = 0.1, 1, and 10 cm -3 ○ Dust (test particle) ・ deceleration by the gas drag, erosion by sputtering ← initial size distribution and spatial distribution of dust The calculation is performed from 10 yr up to ~10 6 yr

3-2.Temperature and density of gas Model : M pr =20 M sun (E 51 =1) n H,0 = 1 cm -3 The temperature of the gas swept up by the shocks ➔ K ↓ Dust grains residing in this hot gas are eroded by sputtering Downward-pointing arrows: forward shock in upper panel reverse shock in lower panel

3-3. Evolution of dust in SNRs Dust grains in the He core collide with reverse shock at (3-13)x10 3 yr The evolution of dust heavily depends on the initial radius and composition a ini = 0.01 μm (dotted lines) ➔ completely destroyed a ini = 0.1 μm (solid lines) ➔ trapped in the shell a ini = 1 μm (dashed lines) ➔ injected into the ISM Model : M pr =20 M sun (E 51 =1) n H,0 = 1 cm -3 (Nozawa et al. 2007, ApJ, 666, 955)

3-4. Size distribution of surviving dust The size distribution of surviving dust is greatly deficient in small-sized grains, compared with that at its formation ➔ Dust grains in the early universe are dominated by large- sized grains of > 0.01 μm

3-5. Total mass of surviving dust Total mass of dust surviving the destruction for Type II SNRs; M sun for SNe II (n H,0 = cm -3 ) M sun for PISNe (n H,0 = 0.1 cm -3 ) ➔ ➔ high enough to explain dust content in high-z galaxies (Morgan & Edmunds 2003, Maiolino et al. 2006; Dwek et al. 2007) ~70% ~30% ~10%

・ Evolution of dust within SNRs ➔ small-sized grains are destroyed more efficiently ➔ for the higher ambient gas density, the average radius of surviving dust shifts toward larger size ・ 2 π a / λ > 1 ➔ Q ext ~ const 4. Extinction curve expected at high-z

4-1. Flattened extinction curves Hirashita et al. (2008, 384, 1725, MNRAS) flat extinction curve at high redshifts !

4-2. Extinction in high-z BAL quasars Priddey et al. (2003, MNRAS, 344, L74) Maiolino et al. (2004, A&A, 420, 889)

4-3. Extinction curves of low-z AGNs Gaskell & Benker (2008, astro-ph/ ) Gaskell et al. (2004, ApJ, 616, 147) Willot (2005, ApJ, 627, L201 ) coagulation of grains? sublimation of small grains? (Maiolino et al. 2001)

4-4. Extinction curves from GRBs Stratta et al. (2005, A&A, 441, 83) Li et al. (2008, ApJ, 678, 1136) coagulation of grains in dense clouds evaporation of small grains by GRB destruction of small grains by shock GRB at z=0.69

Summary ・ The fates of dust grains within SN remnants depend on their initial radii and compositions ・ The size distribution of dust surviving the destruction is weighted to relatively large size (> 0.01 μm) ・ The mass of surviving dust decreases with increasing the ambient gas density (and explosion energy of SNe) for n H,0 = cm -3 SNe II ➔ M dust = M sun PISNe ➔ M dust = M sun ・ Extinction curves in the early universe are expected to be flat.