© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.

Slides:



Advertisements
Similar presentations
Physics: Principles with Applications, 6th edition
Advertisements

Chapter 11 Oscillations and Waves
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 11: Waves Energy Transport.
Physics: Principles with Applications, 6th edition
Objectives Identify how waves transfer energy without transferring matter. Contrast transverse and longitudinal waves. Relate wave speed, wavelength, and.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 11 Waves. Waves l A wave is a disturbance/oscillation generated from its source and travels over long distances. l A wave transports energy but.
Waves Energy can be transported by transfer of matter. For example by a thrown object. Energy can also be transported by wave motion without the transfer.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Wave Motion.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Wave Motion.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 11 Vibrations and Waves Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking.
Chapter 16: Sound 15-9 Standing Waves; Resonance Refraction Diffraction 16-1 Characteristics of Sound 16-3 Intensity of Sound: Decibels 16-4.
Vibration and Waves AP Physics Chapter 11.
Harmonic Motion and Waves Chapter 14. Hooke’s Law If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 15: Wave Motion 15-3 Energy Transported by Waves 15-4 Mathematical Representation of a Traveling Wave 15-5 The Wave Equation 15-6 The Principle.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 11 Vibrations and Waves. Units of Chapter 11 Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature.
Copyright © 2009 Pearson Education, Inc. Lecture 1 – Waves & Sound b) Wave Motion & Properties.
Wave Mechanics Physics 1. What is a wave? A wave is: an energy-transferring disturbance moves through a material medium or a vacuum.
Wave Motion. Conceptual Example: Wave and Particle Velocity Is the velocity of a wave moving along a cord the same as the velocity of a particle of a.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Lecture Outline Chapter 13 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Lecture Outline Chapter 13 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Vibrations and Waves Waves Periodic Motion Periodic motion – a motion that repeats in a regular cycle. Simple harmonic motion – results when.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Waves. Waves 3 Types of Waves Mechanical Waves: Wave motion that requires a medium (ie. water, sound, slinkies, …) Electromagnetic Waves: No medium is.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 11 Vibrations and Waves.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 13 Wave Motion.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 15: Wave Motion 15-2 Types of Waves: Transverse and Longitudinal 15-3 Energy Transported by Waves 15-4 Mathematical Representation of a Traveling.
Chapters Vibrations and Waves; Sound Simple Harmonic Motion Vibrate/Oscillate = goes back and forth Periodic = same amount of time Equilibrium.
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 11 and Chapter 12-7,8 Waves © 2014 Pearson Education, Inc. Info in red font is extra explanation and examples and is probably not necessary to.
Vibrations and Waves Physics I. Periodic Motion and Simple Harmonic Motion  Periodic Motion - motion that repeats back and forth through a central position.
College Physics, 7th Edition
Lecture 11 WAVE.
Physics: Principles with Applications, 6th edition
Physics: Principles with Applications, 6th edition
Physics for Scientists and Engineers, 3rd edition
Unit 10: Part 1 Waves.
Physics: Principles with Applications, 6th edition
Damping Sometimes engineers don’t want springs to keep oscillating.
Physics: Principles with Applications, 6th edition
Chapter 15: Wave Motion Chapter opener. Caption: Waves—such as these water waves—spread outward from a source. The source in this case is a small spot.
Physics for Scientists and Engineers, with Modern Physics, 4th edition
Chapter 15: Wave Motion Chapter opener. Caption: Waves—such as these water waves—spread outward from a source. The source in this case is a small spot.
Interactions of Waves Chapter 11.3.
Physics: Principles with Applications, 6th edition
Waves Chapter 11.
Wave Mechanics Physics 1.
Physics: Principles with Applications, 6th edition
Lets review what we have learned…..
Contents of Chapter 11 Simple Harmonic Motion—Spring Oscillations
Presentation transcript:

© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials. Lecture PowerPoint Chapter 11 Physics: Principles with Applications, 6 th edition Giancoli

Chapter 11 Vibrations and Waves

Units of Chapter 11 Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature of SHM The Simple Pendulum Damped Harmonic Motion Forced Vibrations; Resonance Wave Motion Types of Waves: Transverse and Longitudinal

Units of Chapter 11 Energy Transported by Waves Intensity Related to Amplitude and Frequency Reflection and Transmission of Waves Interference; Principle of Superposition Standing Waves; Resonance Refraction Diffraction Mathematical Representation of a Traveling Wave

11-7 Wave Motion A wave travels along its medium, but the individual particles just move up and down.

11-7 Wave Motion All types of traveling waves transport energy. Study of a single wave pulse shows that it is begun with a vibration and transmitted through internal forces in the medium. Continuous waves start with vibrations too. If the vibration is SHM, then the wave will be sinusoidal.

11-7 Wave Motion Wave characteristics: Amplitude, A Wavelength, λ Frequency f and period T Wave velocity (11-12)

11-8 Types of Waves: Transverse and Longitudinal The motion of particles in a wave can either be perpendicular to the wave direction (transverse) or parallel to it (longitudinal).

11-8 Types of Waves: Transverse and Longitudinal Sound waves are longitudinal waves:

11-9 Energy Transported by Waves If a wave is able to spread out three- dimensionally from its source, and the medium is uniform, the wave is spherical. Just from geometrical considerations, as long as the power output is constant, we see: (11-16b)

11-11 Reflection and Transmission of Waves A wave encountering a denser medium will be partly reflected and partly transmitted; if the wave speed is less in the denser medium, the wavelength will be shorter.

11-11 Reflection and Transmission of Waves Two- or three-dimensional waves can be represented by wave fronts, which are curves of surfaces where all the waves have the same phase. Lines perpendicular to the wave fronts are called rays; they point in the direction of propagation of the wave.

11-11 Reflection and Transmission of Waves The law of reflection: the angle of incidence equals the angle of reflection.

11-12 Interference; Principle of Superposition These figures show the sum of two waves. In (a) they add constructively; in (b) they add destructively; and in (c) they add partially destructively.

11-13 Standing Waves; Resonance Standing waves occur when both ends of a string are fixed. In that case, only waves which are motionless at the ends of the string can persist. There are nodes, where the amplitude is always zero, and antinodes, where the amplitude varies from zero to the maximum value.

11-13 Standing Waves; Resonance The frequencies of the standing waves on a particular string are called resonant frequencies. They are also referred to as the fundamental and harmonics.

11-13 Standing Waves; Resonance The wavelengths and frequencies of standing waves are: (11-19a) (11-19b)

11-14 Refraction If the wave enters a medium where the wave speed is different, it will be refracted – its wave fronts and rays will change direction. We can calculate the angle of refraction, which depends on both wave speeds: (11-20)

11-14 Refraction The law of refraction works both ways – a wave going from a slower medium to a faster one would follow the red line in the other direction.

11-15 Diffraction When waves encounter an obstacle, they bend around it, leaving a “shadow region.” This is called diffraction.

11-16 Mathematical Representation of a Traveling Wave To the left, we have a snapshot of a traveling wave at a single point in time. Below left, the same wave is shown traveling.

Summary of Chapter 11 Vibrating objects are sources of waves, which may be either a pulse or continuous. Wavelength: distance between successive crests. Frequency: number of crests that pass a given point per unit time. Amplitude: maximum height of crest. Wave velocity:

Summary of Chapter 11 Vibrating objects are sources of waves, which may be either a pulse or continuous. Wavelength: distance between successive crests Frequency: number of crests that pass a given point per unit time Amplitude: maximum height of crest Wave velocity:

Summary of Chapter 11 Transverse wave: oscillations perpendicular to direction of wave motion. Longitudinal wave: oscillations parallel to direction of wave motion. Intensity: energy per unit time crossing unit area (W/m 2 ): Angle of reflection is equal to angle of incidence.

Summary of Chapter 11 When two waves pass through the same region of space, they interfere. Interference may be either constructive or destructive. Standing waves can be produced on a string with both ends fixed. The waves that persist are at the resonant frequencies. Nodes occur where there is no motion; antinodes where the amplitude is maximum. Waves refract when entering a medium of different wave speed, and diffract around obstacles.