Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Spring 2007, Exam 1 Time: 75 min (strictly enforced) Points: 50.

Slides:



Advertisements
Similar presentations
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6660: Broadband Networks Exam 2: SOLUTIONS Time: 75 min (strictly enforced) Points: 50 YOUR.
Advertisements

Advanced Computer Networking Congestion Control for High Bandwidth-Delay Product Environments (XCP Algorithm) 1.
Congestion Control An Overview -Jyothi Guntaka. Congestion  What is congestion ?  The aggregate demand for network resources exceeds the available capacity.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS Time: 75 min (strictly enforced)
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #01: SOLUTIONS Shivkumar Kalyanaraman: GOOGLE: “Shiv.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #05: SOLUTIONS Shivkumar Kalyanaraman: GOOGLE: “Shiv.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #06: SOLUTIONS Shivkumar Kalyanaraman: GOOGLE: “Shiv.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4690: Experimental Networking Informal Quiz: TCP Shiv Kalyanaraman:
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #07 Shivkumar Kalyanaraman: GOOGLE: “Shiv RPI”
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6660: Broadband Networks Exam 1 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6660: Broadband Networks Exam 2 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be.
TCP/IP Networks. Table of Contents Computer networks, layers, protocols, interfaces; OSI reference model; TCP/IP reference model; Internet Protocol (operations,
Wide Area Networks School of Business Eastern Illinois University © Abdou Illia, Spring 2007 (Week 11, Thursday 3/22/2007)
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Exam 2 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 Review of Networking Concepts (Part 2) Shivkumar Kalyanaraman Rensselaer Polytechnic Institute.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar 1 ECSE-4670: Computer Communication Networks (CCN) Network Layer Shivkumar.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6961:Internet Protocols Quiz 1: Solutions Time: 60 min (strictly enforced) Points: 50 YOUR.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Quiz 1 Time: 60 min (strictly enforced) Points: 50 YOUR NAME (1.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 Informal Quiz 1 True or False? T F  The structure of MAC addresses facilitates performance.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6961:Internet Protocols Quiz 1 Time: 60 min (strictly enforced) Points: 50 YOUR NAME: Be.
Shivkumar KalyanaramanRensselaer Q1-1 ECSE-6600: Internet Protocols Quiz 1 Time: 60 min (strictly enforced) Points: 50 YOUR NAME: Be brief, but DO NOT.
CSIT435 Spring 2001 Final Examination Study Guide.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4963: Experimental Networking Exam 1: SOLUTIONS Time: 60 min (strictly enforced) Points:
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4963: Experimental Networking Informal Quiz Shivkumar Kalyanaraman:
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 Internet Protocols ECSE:6961 Shivkumar Kalyanaraman Rensselaer Polytechnic Institute
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6660: Broadband Networks Exam 3: Comprehensive Time: 120 min (strictly enforced) Points:
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4963: Experimental Networking Exam 1 Time: 60 min (strictly enforced) Points: 50 YOUR NAME:
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Exam 3 Time: 90 min (strictly enforced) Points: 50 YOUR NAME: Be.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4670: Computer Communications Netwoks Exam 2: Solutions Time: 75 min (strictly enforced)
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4670: Computer Communications Netwoks Exam 1: SOLUTIONS Time: 75 min (strictly enforced)
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 Informal Quiz 1 True or False? T F  The structure of MAC addresses facilitates scalability.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1-1 Internetworking: addressing, forwarding, resolution, fragmentation Shivkumar Kalyanaraman Rensselaer.
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar1 ECSE-4670: Computer Communication Networks (CCN) Informal Quiz 1 Shivkumar.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1-1 ECSE-4670: CCN Quiz 1: Solutions Time: 45 min (strictly enforced) Points: 50 YOUR NAME: Be.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6961:Internet Protocols Quiz 2 Time: 60 min (strictly enforced) Points: 50 { 5 questions,
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1-1 Informal Quiz 3 True or False? T F  Forwarding works in the control plane whereas routing.
Networking and Internetworking Devices Networks and Protocols Prepared by: TGK First Prepared on: Last Modified on: Quality checked by: Copyright 2009.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4670: Computer Communication Networks (CCN) Informal Quiz 1 (Solutions) Shivkumar Kalyanaraman:
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6961:Internet Protocols Quiz 3 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Quiz 1 SOLUTIONS Time: 60 min (strictly enforced) Points: 50 YOUR.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 00-1 ECSE-4730: Computer Communications Networks (CCN): Introduction Shivkumar Kalyanaraman Rensselaer.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-4670: Computer Communication Networks (CCN) Informal Quiz 2 Shivkumar Kalyanaraman:
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 Informal Quiz 2 True or False? T F  The IP checksum protects the entire IP datagram 
Ch. 28 Q and A IS 333 Spring Q1 Q: What is network latency? 1.Changes in delay and duration of the changes 2.time required to transfer data across.
Lecture 1, 1Spring 2003, COM1337/3501Computer Communication Networks Rajmohan Rajaraman COM1337/3501 Textbook: Computer Networks: A Systems Approach, L.
Switched network.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #03 SOLUTIONS Shivkumar Kalyanaraman: GOOGLE: “Shiv.
Parameswaran, Subramanian
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 A TCP Friendly Traffic Marker for IP Differentiated Services Feroz Azeem, Shiv Kalyanaraman,
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #14 Shivkumar Kalyanaraman: GOOGLE: “Shiv RPI”
Fall 2001CS 6401 Introduction to Networking Outline Networking History Statistical Multiplexing Performance Metrics.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #01 Shivkumar Kalyanaraman: GOOGLE: “Shiv RPI”
Performance Engineering E2EpiPEs and FastTCP Internet2 member meeting - Indianapolis World Telecom Geneva October 15, 2003
Generalized Multicast Congestion Control (GMCC) Jiang Li, Shiv Kalyanaraman Rensselaer Polytechnic Institute Troy, NY, USA Jiang is now with Howard University.
TCP continued. Discussion – TCP Throughput TCP will most likely generate the saw tooth type of traffic. – A rough estimate is that the congestion window.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Informal Quiz #09: SOLUTIONS Shivkumar Kalyanaraman: GOOGLE: “Shiv.
Midterm Review Chapter 1: Introduction Chapter 2: Application Layer
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Exam 3 Time: 90 min (strictly enforced) [Hint: spend time roughly.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Exam 2 Time: 80 min (strictly enforced) [Hint: spend time roughly.
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 Internet Protocols ECSE Or
Peer-to-Peer Networks 13 Internet – The Underlay Network
Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1-1 Source-Based Multicast Congestion Control P. Thapliyal, Sidhartha, S.Kalyanaraman Rensselaer.
1 Lecture 15 Internet resource allocation and QoS Resource Reservation Protocol Integrated Services Differentiated Services.
Performance of TCP over ATM How best to manage TCP’s segment size, window management and congestion control… …at the same time as ATM’s quality of service.
Data and Computer Communications Chapter 7 Circuit Switching and Packet Switching.
ECSE-4963: Experimental Networking Exam 1
ECSE-4670: Computer Communication Networks (CCN)
ECSE-4670: Computer Communication Networks (CCN)
ECSE-4670: Computer Communication Networks (CCN)
ECSE-4670: Computer Communications Netwoks Exam 1: SOLUTIONS
Presentation transcript:

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 1 ECSE-6600: Internet Protocols Spring 2007, Exam 1 Time: 75 min (strictly enforced) Points: 50 YOUR NAME (1 pt): Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly from the slides or notes will not earn (partial) credit. Brief, clear and consistent explanation will.}

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 2 I. Short Questions: Networking Ideas Review [8 pts] Briefly, explain the differences between: A) (2 pts) Go-Back-N vs Selective Repeat B) (2 pts) IP (or L3) forwarding vs forwarding in L2 bridges C) (2 pts) IP fragmentation/reassembly vs TCP segmentation of byte stream D) (2 pts) ARP vs DNS

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 3 2. [6 pts] Internet Design: Explain what mechanisms the Internet architecture uses to meet its goals of scalability and accommodation of heterogeneity? Compare/Contrast with alternative mechanisms that may be less effective for these goals.

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 4 II. [10 pts] Statistical Multiplexing, Congestion Control (2 pts) Explain why you do not have the congestion control problem in circuit switching (and why it arises in packet switching with statistical multiplexing)? (4 pts) Explain why AIMD leads to fairness, and why AIAD or MIMD may not lead to fairness? (Hint: use phase plots like we did for AIMD in class) (4 pts) Consider a random traffic source that has an average rate (  ) 5 Mbps, standard deviation (  ) = 0.25 Mbps, and peak rate of 10 Mbps. You want to provision capacity C. Suppose you want to limit the probability of the short term rate (R) exceeding C (i.e. P( R > C)) to 4%, what value of C would you pick? (Hint: recall Chebyshev’s theorem we saw in TCP RTO design)

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 5

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 6 III. [10 pts] Virtualization, Indirection, Multiplexing, Reliability: (4 pts) Explain the concepts of indirection, virtualization and multiplexing. (4 pts) Explain how you could create a virtual router out of a set of physical routers to provide reliability. Walk through what happens (how the indirection & virtualization is done) when any important router in your set of physical routers fails. (2 pts) How do you ensure that remote nodes will not see any changes (in terms of L3 and L2 addresses they have in their forwarding tables and ARP tables) ?

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 7 q (2 pts) How do you ensure that remote nodes will not see any changes (in terms of L3 and L2 addresses they have in their forwarding tables and ARP tables) ?

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 8 IV. [15 pts] TCP & Congestion Control: [5 pts] Explain why TCP self-clocking could lead to burstiness? How does it constrain TCP’s throughput in asymmetric links? How could you rectify the situation & restore performance? [5 pts] Consider a large bandwidth-delay product (BDP) path (eg: between two supercomputers in NYC and SFO), and small buffers relative to the BDP. What performance issues would TCP face in such paths? What would happen to TCP performance if the delay portion of this bandwidth-delay product became smaller (while the product remained high)? Explain crisply. [5 pts] If you had multi-bit explicit feedback, could you make TCP performance better? Why/how? How could multi-bit feedback help in cases where you had huge volatility in the BDP?

Shivkumar Kalyanaraman Rensselaer Polytechnic Institute 9 [5 pts] If you had multi-bit explicit feedback, could you make TCP performance better? Why/how? How could multi-bit feedback help in cases where you had huge volatility in the BDP?