1 © 2006 Brooks/Cole - Thomson Electrolysis Using electrical energy to produce chemical change. Sn 2+ (aq) + 2 Cl - (aq) ---> Sn(s) + Cl 2 (g)

Slides:



Advertisements
Similar presentations
1 Suppose we had a 0.3A current producing 15mL of hydrogen gas in 6 min and 30 seconds. How much charge did we have per one mole of electrons? We need.
Advertisements

1 © 2006 Brooks/Cole - Thomson Balancing Equations for Redox Reactions Some redox reactions have equations that must be balanced by special techniques.
Unit 4: Chemistry at Work Area of Study 2 – Using Energy
ELECTROLYSIS IN IDUSTRY EXTRACTION OF METALS PURIFICATION OF METALS
Jeffrey Mack California State University, Sacramento Chapter 20 Principles of Chemical Reactivity: Electron Transfer Reactions.
Electrolysis & Understanding Electrolytic Cells : When a non-spontaneous redox reaction is made to occur by putting electrical energy into the system.
Let’s read! Pages 82 to 89. Objectives To know how to carry out electrolysis experiments. To work out what happens to ions at each electrode. To be able.
19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Chemistry 1011 Slot 51 Chemistry 1011 TOPIC Electrochemistry TEXT REFERENCE Masterton and Hurley Chapter 18.
Dry Cell Battery Anode (-) Zn ---> Zn e- Cathode (+) 2 NH e- ---> 2 NH 3 + H 2 Common dry cell Copyright © 1999 by Harcourt Brace & Company.
Electrochemistry Batteries. Batteries Lead-Acid Battery A 12 V car battery consists of 6 cathode/anode pairs each producing 2 V. Cathode: PbO 2 on a metal.
Oxidation and reduction reactions occur in many chemical systems. Examples include the rusting of iron, the action of bleach on stains, and the reactions.
Lecture 284/3/06 Seminar today. Secondary Batteries (rechargeable) Lead Acid battery E° = 2.04 V Anode:Pb(s) + HSO 4 - (aq)  PbSO 4 (s) + H + + 2e -
Lecture 263/30/07. E° F 2 (g) + 2e - ↔ 2F Ag + + e - ↔ Ag (s)+0.80 Cu e - ↔ Cu (s)+0.34 Zn e - ↔ Zn (s)-0.76 Quiz 1. Consider these.
Lecture 294/13/05. Counting electrons 96,500 C/mol e-
Lecture /28/07.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
JF Basic Chemistry Tutorial : Electrochemistry
Representing electrochemical cells The electrochemical cell established by the following half cells: Zn(s) --> Zn 2+ (aq) + 2 e - Cu 2+ (aq) + 2 e - -->
Electrochemistry Chapter 19.
John C. Kotz State University of New York, College at Oneonta John C. Kotz Paul M. Treichel John Townsend Chapter 20 Principles.
CHEM 160 General Chemistry II Lecture Presentation Electrochemistry December 1, 2004 Chapter 20.
ELECTROCHEMISTRY REDOX REVISITED! 24-Nov-97Electrochemistry (Ch. 21) & Phosphorus and Sulfur (ch 22)1.
CHAPTER 17 Electrochemistry – part 2. Electrolysis and Electrolytic Cells Anode: where oxidation takes place ◦ Anions are oxidized at this electrode ◦
Chapter 21: Electrochemistry III Chemical Change and Electrical Work 21.6 Corrosion: A Case of Environmental Electrochemistry 21.7 Electrolytic Cells:
Chapter 20 - Electron Transfer Reactions Objectives: 1. Carry out balancing of redox reactions in acidic or basic solutions; 2. Recall the parts of a basic.
Lecture 41 - Electrochemistry V. Review Galvanic Cells: Reaction is spontaneous E o cell > 0 The “product” is an electrical current Some can be reversed.
The End is in Site! Nernst and Electrolysis. Electrochemistry.
Voltaic or Galvanic Cells D8 c34 Electrochemical Cell.
Chapter 18 Electrochemistry. 2 GOALS Review: oxidation states oxidation/reduction oxidizing/reducing agent ch. 17 Balancing redox reactions Voltaic cells.
Electrolysis. Drill What is the color of the following ion in solution? Nickel Ans: green Copper Ans: blue Cobalt Ans: pink Iron (II) Ans: light blue.
Electrochemistry Chapter 19.
1 © 2006 Brooks/Cole - Thomson Chemistry and Chemical Reactivity 6th Edition John C. Kotz Paul M. Treichel Gabriela C. Weaver CHAPTER 20 Principles of.
Redox Reactions and Electrochemistry
1 Electrolysis Using electrical energy to produce chemical change. Sn 2+ (aq) + 2 Cl - (aq) ---> Sn(s) + Cl 2 (g) Sn Cl 2 SnCl 2 (aq)
Electrochemistry is the study of chemical reactions that produce electrical effects.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Activity Series lithiumpotassiummagnesiumaluminumzincironnickelleadHYDROGENcoppersilverplatinumgold Oxidizes easily Reduces easily Less active More active.
Electrical and Chemical Energy Interconversion
Topic 19 Oxidation and reduction
Electrochemistry Electrolysis Electrolytic Cells An electrolytic cell is an electrochemical cell that undergoes a redox reaction when electrical energy.
Electrolysis & Applications Since chemical oxidation-reduction involves the transfer of electrons from one substance to another, it should be.
Ch 17: Instrumental Methods in Electrochemistry Principle parts of a personal glucose monitor (covered in the section on Amperometry) The following chapter.
19.4 Spontaneity of Redox Reactions  G = -nFE cell  G 0 = -nFE cell 0 n = number of moles of electrons in reaction F = 96,500 J V mol = 96,500 C/mol.
Electrolysis Chapter 17 Section 7 Electrochemistry e-
Electrochemistry Electrolysis.
REDOX Part 2 - Electrochemistry Text Ch. 9 and 10.
Electrolysis. Curriculum Framework F= 96,500 C/mol of eC = amperes per second.
18.8 Electrolysis 2 Types of electrochemistry 1.Battery or Voltaic Cell – Purpose? 2.Electrolysis - forces a current through a cell to produce a chemical.
1 CELL POTENTIAL, E Electrons are “driven” from anode to cathode by an electromotive force or emf.Electrons are “driven” from anode to cathode by an electromotive.
SPRING REVIEW PART TWO. PRECIPITATION REACTIONS Chapter 19 Copyright © 1999 by Harcourt Brace & Company All rights reserved. Requests for permission to.
1 Quantitative Aspects of Electrochemistry Consider electrolysis of aqueous silver ion. Ag + (aq) + e- ---> Ag(s) 1 mol e----> 1 mol Ag If we could measure.
Electrolysis  Section Electrolysis Occurs in an electrolytic cell Can be the molten salt, or ions in solution Cations are attracted to the cathode.
Prentice-Hall © 2007 General Chemistry: Chapter 20 Slide 1 of 54 Juana Mendenhall, Ph.D. Assistant Professor Lecture 4 March 22 Chapter 20: Electrochemistry.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
1 UNIT 7 Reduction / Oxidation Reactions “Redox” and Electrochemistry.
Chapter 19: Electrochemistry: Voltaic Cells Generate Electricity which can do electrical work. Voltaic or galvanic cells are devices in which electron.
18.8 Electrolysis: Driving Non-Spontaneous Chemical Reactions with Electricity.
Topic 19 Oxidation and Reduction. 1)What is the oxidation number of P in PO 4 -3 ? 2)If Cu and Zn and connected, which is the anode? 3)What reaction (oxidation.
ELECTROCHEMISTRY CHEM171 – Lecture Series Four : 2012/01  Redox reactions  Electrochemical cells  Cell potential  Nernst equation  Relationship between.
1 © 2009 Brooks/Cole - Cengage ELECTROCHEMISTRY Chapter
Electrolysis 2 Types of electrochemistry 1. Battery or Voltaic Cell – Purpose? 2. Electrolysis - forces a current through a cell to produce a chemical.
Electrolysis 3.7 Electrolysis…. Electrolysis Use of electrical energy to produce chemical change...forcing a current through a cell to produce a chemical.
Ch. 20: Electrochemistry Lecture 4: Electrolytic Cells & Faraday’s Law.
Chemistry AS – Redox reactions
Chapter 19 Electrochemistry Semester 1/2009 Ref: 19.2 Galvanic Cells
from a battery or other external energy source
A. Oxidation-Reduction Reactions
Presentation transcript:

1 © 2006 Brooks/Cole - Thomson Electrolysis Using electrical energy to produce chemical change. Sn 2+ (aq) + 2 Cl - (aq) ---> Sn(s) + Cl 2 (g)

2 © 2006 Brooks/Cole - Thomson Electrolysis Electric Energy ---> Chemical Change Electrolysis of molten NaCl. Electrolysis of molten NaCl. Here a battery “pumps” electrons from Cl - to Na +. Here a battery “pumps” electrons from Cl - to Na +. NOTE: Polarity of electrodes is reversed from batteries. NOTE: Polarity of electrodes is reversed from batteries.

3 © 2006 Brooks/Cole - Thomson Electrolysis of Molten NaCl Figure 20.18

4 © 2006 Brooks/Cole - Thomson Electrolysis of Molten NaCl Anode (+) 2 Cl - ---> Cl 2 (g) + 2e- Cathode (-) Na + + e- ---> Na E o for cell (in water) = V (in water) External energy needed because E o is (-).

5 © 2006 Brooks/Cole - Thomson Electrolysis of Aqueous NaI Anode (+): 2 I - ---> I 2 (g) + 2e- Cathode (-): 2 H 2 O + 2e- ---> H OH - E o for cell = V

6 © 2006 Brooks/Cole - Thomson Electrolysis of Aqueous CuCl 2 Anode (+) 2 Cl - ---> Cl 2 (g) + 2e- Cathode (-) Cu e- ---> Cu E o for cell = V Note that Cu 2+ is more easily reduced than either H 2 O or Na +.

7 © 2006 Brooks/Cole - Thomson Michael Faraday Originated the terms anode, cathode, anion, cation, electrode. Discoverer of electrolysiselectrolysis magnetic props. of mattermagnetic props. of matter electromagnetic inductionelectromagnetic induction benzene and other organic chemicalsbenzene and other organic chemicals Was a popular lecturer.

8 © 2006 Brooks/Cole - Thomson Quantitative Aspects of Electrochemistry Consider electrolysis of aqueous silver ion. Ag + (aq) + e- ---> Ag(s) 1 mol e----> 1 mol Ag If we could measure the moles of e-, we could know the quantity of Ag formed. But how to measure moles of e-?

9 © 2006 Brooks/Cole - Thomson But how is charge related to moles of electrons? Quantitative Aspects of Electrochemistry = 96,500 C/mol e- = 1 Faraday Michael Faraday

10 © 2006 Brooks/Cole - Thomson Quantitative Aspects of Electrochemistry 1.50 amps flow through a Ag + (aq) solution for 15.0 min. What mass of Ag metal is deposited? Solution (a)Calc. charge Charge (C) = current (A) x time (t) = (1.5 amps)(15.0 min)(60 s/min) = 1350 C

11 © 2006 Brooks/Cole - Thomson Quantitative Aspects of Electrochemistry Solution (a)Charge = 1350 C (b)Calculate moles of e- used 1.50 amps flow through a Ag + (aq) solution for 15.0 min. What mass of Ag metal is deposited? (c)Calc. quantity of Ag

12 © 2006 Brooks/Cole - Thomson Quantitative Aspects of Electrochemistry The anode reaction in a lead storage battery is Pb(s) + HSO 4 - (aq) ---> PbSO 4 (s) + H + (aq) + 2e- If a battery delivers 1.50 amp, and you have 454 g of Pb, how long will the battery last? Solution a)454 g Pb = 2.19 mol Pb b)Calculate moles of e- c)Calculate charge 4.38 mol e- 96,500 C/mol e- = 423,000 C 4.38 mol e- 96,500 C/mol e- = 423,000 C

13 © 2006 Brooks/Cole - Thomson Quantitative Aspects of Electrochemistry The anode reaction in a lead storage battery is Pb(s) + HSO 4 - (aq) ---> PbSO 4 (s) + H + (aq) + 2e- If a battery delivers 1.50 amp, and you have 454 g of Pb, how long will the battery last? Solution a)454 g Pb = 2.19 mol Pb b)Mol of e- = 4.38 mol c)Charge = 423,000 C About 78 hours d)Calculate time