Physics 1202: Lecture 23 Today’s Agenda Announcements: –Lectures posted on: www.phys.uconn.edu/~rcote/ www.phys.uconn.edu/~rcote/ –HW assignments, etc.

Slides:



Advertisements
Similar presentations
Chapter 31: Images and Optical Instruments
Advertisements

Chapter 23:Mirrors and Lenses Flat Mirrors Homework assignment : 20,24,42,45,51  Image of a point source P P’ The reflected rays entering eyes look as.
Physics 2102 Jonathan Dowling Lecture 25 Optics: Images.
Flat Mirrors Consider an object placed in front of a flat mirror
LIGHT THIN LENSES Name: ________________ Class: _________________
Physics 1161 – Lecture 23 Lenses
Flat Lens (Window) n1n1 n2n2 Incident ray is displaced, but its direction is not changed. tt 11 11 If  1 is not large, and if t is small, the.
→ ℎ
How well do you know Lenses? Lenses work because of A. refraction B. reflection c. Both.
Physics Light: Geometric Optics 23.1 The Ray Model of Light 23.2 Reflection - Plane Mirror 23.3 Spherical Mirrors 23.5 Refraction - Snell’s law.
Chapter 34 Geometric Optics. What is Geometric Optics It is the study of light as particles. Geometric optics treats light as particles (or rays) that.
Curved Mirrors.
1 From Last Time… Lenses and image formation Object Image Lens Object Image Thurs. Sep. 17, 2009Physics 208, Lecture 5.
and Optical Instruments
Lecture 25-1 Locating Images Real images form on the side of a mirror where the objects are, and virtual images form on the opposite side. only using the.
Reference Book is Geometric Optics.
Reflection and Refraction. Reflection  Reflection occurs when light bounces off a surface.  There are two types of reflection – Specular reflection.
Light: Geometric Optics
Chapter 36 Image Formation. Summary: mirrors Sign conventions: + on the left - on the right Convex and plane mirrors: only virtual images (for real objects)
Curved Mirrors. Two types of curved mirrors 1. Concave mirrors – inwardly curved inner surface that converges incoming light rays. 2. Convex Mirrors –
Your final homework (#12) is due Friday 25th April. This homework can be collected from my office area in SER 220 from Monday 28 th onwards (for exam revision).
Physics 1502: Lecture 30 Today’s Agenda Announcements: –Midterm 2: Monday Nov. 16 … –Homework 08: due Friday Optics –Mirrors –Lenses –Eye.
Physics 1402: Lecture 31 Today’s Agenda Announcements: –Midterm 2: Monday Nov. 16 … –Homework 08: due Wednesday (after midterm 2) Optics –Lenses –Eye.
Lenses Physics 202 Professor Lee Carkner Lecture 21.
Copyright © 2009 Pearson Education, Inc. Lecture 2 – Geometrical Optics b) Thin Lenses.
C F V Light In Side S > 0 Real Object Light Out Side S ’ > 0 Real Image C This Side, R > 0 S < 0 Virtual Object S ’ < 0 Virtual Image C This Side, R
Physics 52 - Heat and Optics Dr. Joseph F. Becker Physics Department San Jose State University © 2005 J. F. Becker San Jose State University Physics 52.
LENSES.
Physics 1502: Lecture 29 Today’s Agenda Announcements: –Midterm 2: Monday Nov. 16 … –Homework 08: due Friday Optics –Index of Refraction.
Lenses Physics 202 Professor Lee Carkner Lecture 23.
Lenses Physics 202 Professor Lee Carkner Lecture 23.
 Get out notes and practice from yesterday  Pick up ruler and finish practice from yesterday.
Mirrors & Lenses Chapter 23 Chapter 23 Learning Goals Understand image formation by plane or spherical mirrors Understand image formation by converging.
Thin Lenses.
Example: An object 3 cm high is placed 20 cm from (a) a convex and (b) a concave spherical mirror, each of 10 cm focal length. Determine the position.
Lecture 14 Images Chp. 35 Opening Demo Topics –Plane mirror, Two parallel mirrors, Two plane mirrors at right angles –Spherical mirror/Plane mirror comparison.
A. can be focused on a screen. B. can be projected on a wall.
Index of Refraction Index of refraction of a medium is defined in terms of the speed of light in this medium In general, the speed of light in any material.
Spherical Mirrors Spherical mirror – a section of a sphere of radius R and with a center of curvature C R C Mirror.
Chapter 14 Light and Reflection
Physics 1C Lecture 26A.
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
8. Thin lenses Thin lenses are those whose thickness is small compared to their radius of curvature. They may be either converging or diverging. 1) Types.
Chapter 34 Lecture Eight: Images: II. Image Formed by a Thin Lens A thin lens is one whose thickness is small compared to the radii of curvature For a.
Last Word on Chapter 22 Geometric Optics Images in a Plane Mirror.
Unit 11: Part 2 Mirrors and Lenses. Outline Plane Mirrors Spherical Mirrors Lenses The Lens Maker’s Equation Lens Aberrations.
Geometric Optics This chapter covers how images form when light bounces off mirrors and refracts through lenses. There are two different kinds of images:
Chapter 35 MirrorsLenses Images. We will use geometrical optics: light propagates in straight lines until its direction is changed by reflection or refraction.
Chapter 34 Lecture Seven: Images: I HW 3 (problems): 34.40, 34.43, 34.68, 35.2, 35.9, 35.16, 35.26, 35.40, Due Friday, Sept. 25.
AP Physics IV.C Geometric Optics. Wave Fronts and Rays.
Textbook sections 26-3 – 26-5, 26-8 Physics 1161: Lecture 17 Reflection & Refraction.
Lesson 4 Define the terms principal axis, focal point, focal length and linear magnification as applied to a converging (convex) lens. Define the power.
Today’s agenda: Death Rays. You must know when to run from Death Rays. Refraction at Spherical Surfaces. You must be able to calculate properties of images.
Dispersion The spreading of light into its color components is called dispersion. When light enters a prism, the refracted ray is bent towards the normal,
 Mirrors that are formed from a section of a sphere.  Convex: The reflection takes place on the outer surface of the spherical shape  Concave: The.
Physics 1202: Lecture 21 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc.
Physics 1202: Lecture 22 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc.
Physics 212 Lecture 26: Lenses.
Mirrors.
Revision of terminology and drawing a Ray diagram
Today’s Lecture will cover textbook sections 26-3 – 26-5, 26-8 Physics 1161: Lecture 17 Reflection and Refraction of Light.
Physics 212 Lecture 27, Slide 1 Physics 212 Lecture 27: Mirrors.
Today’s Lecture will cover textbook sections 23.9,24.1,3-4,6 Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles.
Mirrors. Types of mirror There are two types of mirror Plane (flat) Curved Concave (curves in) Convex (curves out)
Mirrors and Lenses How do eyeglasses correct your vision? When you look in a mirror, where is the face you see? In which ways is a cell phone camera similar.
Thin Lenses.  When light passes through a lens, it refracts twice ◦ Once upon entering the lens and once upon leaving  Exiting ray is parallel to the.
Lecture 25-1 Locating Images Real images form on the side of a mirror where the objects are, and virtual images form on the opposite side. only using the.
Lecture 2: Reflection of Light: Mirrors (Ch 25) & Refraction of Light: Lenses (Ch 26)
Part 3: Optics (Lenses and Mirrors)
Geometrical Optics Seminar add-on Ing. Jaroslav Jíra, CSc.
Presentation transcript:

Physics 1202: Lecture 23 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, etc. Homework #7:Homework #7: –Due next Friday

o i f h’h’ h R   h h’h’ o-R R-i o i &

Mirror – Lens Definitions Some important terminology we introduced last class, –o = distance from object to mirror (or lens) – i = distance from mirror to image o positive, i positive if on same side of mirror as o. –R = radius of curvature of spherical mirror –f = focal length, = R/2 for spherical mirrors. –Concave, Convex, and Spherical mirrors. –M = magnification, (size of image) / (size of object) negative means inverted image R     object  h image o i

Summary We have derived, in the paraxial (and thin lens) approximation, the same equations for mirrors and lenses: when the following sign conventions are used: Variable f > 0 f < 0 o > 0 o < 0 i > 0 i < 0 Mirror concave convex real (front) virtual (back) real (front) virtual (back) Lens converging diverging real (front) virtual (back) real (back) virtual (front)

This could be used as a projector. Small slide on big screen This is a magnifying glass This could be used in a camera. Big object on small film Upright Enlarged Virtual Inverted Enlarged Real Inverted Reduced Real 3 Cases for Converging Lenses ImageObject Inside F Object Image Past 2F Image Object Between F & 2F

1) Rays parallel to principal axis pass through focal point. 2) Rays through center of lens are not refracted. 3) Rays toward F emerge parallel to principal axis. F F Object P.A. Image is virtual, upright and reduced. Image Diverging Lens Principal Rays

Lecture 23, ACT 1 A lens is used to image an object on a screen. The right half of the lens is covered. –What is the nature of the image on the screen? (a) left half of image disappears (b) right half of image disappears (c) entire image reduced in intensity object lens screen

Multiple Lenses We determine the effect of a system of lenses by considering the image of one lens to be the object for the next lens. For the first lens: o 1 = +1.5, f 1 = +1 For the second lens: o 2 = +1, f 2 = -4   f = +1 f =

Multiple Lenses Objects of the second lens can be virtual. Let’s move the second lens closer to the first lens (in fact, to its focus): For the first lens: o 1 = +1.5, f 1 = +1 For the second lens: o 2 = -2, f 2 = -4   Note the negative object distance for the 2nd lens. f = +1 f =

Multiple Lenses If the two lenses are thin, they can be touching – i.e. in the same position. We can treat as one lens. f total = ?? ? Adding, For the first lens: o=o 1, i 1 and f 1 For the second lens: o 2 = -i 1, i 2 =i, f 2 As long as,

The Lens Equation –Convergent Lens: i f h’h’ o h

The Lensmaker’s Formula So far, we have treated lenses in terms of their focal lengths. How do you make a lens with focal length f ? Start with Snell’s Law. Consider a plano-convex lens: Snell’s Law at the curved surface: The bend-angle  is just given by: The bend-angle  also defines the focal length f: The angle  can be written in terms of R, the radius of curvature of the lens : Putting these last equations together, R N air h     light ray Assuming small angles,

More generally…Lensmaker’s Formula Two curved surfaces… Two arbitrary indices of refraction R > 0 if convex when light hits it R < 0 if concave when light hits it The complete generalized case… Note: for one surface Planar,

Compound Microscope o1o1 h O I2I2 h2h2 f eye h1h1 I1I1 i1i1 Objective (f ob < 1cm) f ob L Eyepiece (f eye ~5cm) Magnification:

Refracting Telescope Star f eye I2I2 h2h2 f ob Objective (f ob ~ 250cm) Eyepiece (f eye ~5cm) i1i1 I1I1 h1h1 Angular Magnification:    

~f e I1I1 eyepiece I2I2 ~f o objective L The EYE

Retina To brain The Eye What does the eye consist of? –Sphere (balloon) of water. - An aperture that controls how much light gets through – the Iris/pupil - Bulge at the front – the cornea - A variable focus lens behind the retina – the lens - A screen that is hooked up to your brain – the retina Cornea Iris Lens