1 / 16 Numerical Simulations for Reionization of the Universe Nakamoto, T. (Univ. of Tsukuba) Hiroi, K. Umemura, M. 1. Why Reionization by 3-D RT ? 2.

Slides:



Advertisements
Similar presentations
Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
Advertisements

21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
School of Physics & Astronomy Simulating the spectra of Quasars: A simple disk-wind model for BALQSOs Nick Higginbottom (Southampton University) Christian.
Laser physics simulation program Lionel Canioni University Bordeaux I France.
Efficient Monte Carlo continuum radiative transfer with SKIRT Maarten Baes 2 nd East-Asia Numerical Astrophysics Meeting, Daejeon, Korea 3 November 2006.
Non-magnetic Planets Yingjuan Ma, Andrew Nagy, Gabor Toth, Igor Sololov, KC Hansen, Darren DeZeeuw, Dalal Najib, Chuanfei Dong, Steve Bougher SWMF User.
Formation of Globular Clusters under the Influence of Ultraviolet Radiation Dynamical Evolution of GCs ResultsResults Kenji Hasegawa & Masayuki Umemura.
21cm Constraints on Reionization Benedetta Ciardi MPA T. Di Matteo (CMU), A. Ferrara (SISSA), I. Iliev (CITA), P. Madau (UCSC), A. Maselli (MPA), F. Miniati.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
Oct 17, Non-Equilibrium Ionization Orly Gnat (Caltech) with Amiel Sternberg (Tel-Aviv University) Gnat & Sternberg 2007, ApJS, 168, 213 in Post-Shock.
The Dark Age… before the stars, beyond the galaxies…
Self-consistency of the RT solutions. Self-consistent solution of RT Take into account the intensity part of the source function (scattering) Construct.
Epoch of Reionization Tomography with the CSO Wide-field C+ spectral mapping and correlation with HI Matt Bradford CSO NSF visit: October 12, 2011 CSO.
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
Jonathan Slavin Harvard-Smithsonian CfA
Connecting Accretion Disk Simulations with Observations Part II: Ray Tracing Jason Dexter 10/9/2008.
Escape of Ionizing Radiation From Galaxies Nick Gnedin.
MET 61 1 MET 61 Introduction to Meteorology MET 61 Introduction to Meteorology - Lecture 8 “Radiative Transfer” Dr. Eugene Cordero San Jose State University.
Simulation of streamer propagation using a PIC-MCC code. Application to Sprite discharges. Olivier Chanrion and Torsten Neubert Danish National Space Center.
14/06/2007 Sebastiano Cantalupo - HCRI Allahabad QSO proximity regions in Lyα emission (and absorption) during HI Reionization Sebastiano Cantalupo.
Solar Physics Course Lecture Art Poland Modeling MHD equations And Spectroscopy.
Rupert Croft (Carnegie Mellon). Studing Radiation-Induced LSS: Motivation We know a lot about the growth of large-scale structure due to gravitational.
Attenuation by absorption and scattering
Feedback Effects of the First Stars on Nearby Halos Kyungjin Ahn The University of Texas at Austin The End of the Dark Ages STSCI March 13, 2006.
Radiative Feedback Effects of the First Objects in the Early Universe Kyungjin Ahn The University of Texas at Austin East-Asia Numerical Astrophysics Meeting.
R. Oran csem.engin.umich.edu SHINE 09 May 2005 Campaign Event: Introducing Turbulence Rona Oran Igor V. Sokolov Richard Frazin Ward Manchester Tamas I.
Benedetta Ciardi MPA Reionization Nucleosynthesis ‘Dark Ages’ Big Bang Fluctuations begin to condense into first stars and protogalaxies Decoupling matter-radiation.
Helium, dust and frequencies Recent improvements in SimpleX2 Chael Kruip Jan-Pieter Paardekooper Vincent Icke.
Monte-Carlo Simulation of Thermal Radiation from GRB Jets Sanshiro Shibata (Konan Univ.) Collaborator: Nozomu Tominaga (Konan Univ., IPMU)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
1 / 31 Reionization of Universe: 3D Radiative Transfer Simulations T. Nakamoto (Univ. of Tsukuba) 1. Why Reionization ? 2. TsuCube Project 3. Toward a.
DSA in the non-linear regime Hui Li Department of Astronomy, Nanjing University.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Line emission by the first star formation Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai (NAOJ) Formation.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
Lyman- Emission from The Intergalactic Medium
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Star Formation in Cosmological Simulations: the Molecular Gas Connection Kostas Tassis Jet Propulsion Laboratory California Institute of Technology.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
Effects of early reionization on the formation of galaxies Hajime Susa Rikkyo University.
Observing galaxies at z = 8.8 — is it worth the effort? | Niels Bohr Institutet | Københavns Universitet Peter Laursen, with.
Feedback Effects of the First Stars on Nearby Halos Kyungjin Ahn The University of Texas at Austin The End of the Dark Ages STSCI March 13, 2006.
What the Formation of the First Stars Left in its Wake.
Monte Carlo Photoionization Simulations of Diffuse Ionized Gas Kenneth Wood University of St Andrews In collaboration with John Mathis, Barbara Ercolano,
Ringberg1 The gas temperature in T- Tauri disks in a 1+1-D model Bastiaan Jonkheid Frank Faas Gerd-Jan van Zadelhoff Ewine van Dishoeck Leiden.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
March 26, Large Scale Simulations: properties of the 21cm signal Garrelt Mellema Stockholm Observatory Collaborators: Martina.
Constraint on Cosmic Reionization from High-z QSO Spectra Hiroi Kumiko Umemura Masayuki Nakamoto Taishi (University of Tsukuba) Mini Workshop.
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
High Redshift QUASAR Spectra as Probe of Reionization of IGM.
Ilian T. Iliev Canadian Institute for Theoretical Astrophysics/University of Zurich with Garrelt Mellema (Stockholm), Jane Arthur, Will Henney (UNAM, Morelia),
Reionization of the Universe MinGyu Kim
Proximity Effect Around High-redshift Galaxies
Date of download: 10/16/2017 Copyright © ASME. All rights reserved.
Radiative transfer in galactic disks…
Lecture 3 Radiative Transfer
Radiative Field (Hubeny & Mihalas Chapter 3)
Intergalactic transmission and its impact on the Lyman a line
John DeVries1,2, Dr. Neal Turner2, and Dr. Susan Terebey1,2
Gabriel Altay Advisor: Rupert Croft Partner in Crime: Inti Pelupessy
Radiative Field (Hubeny & Mihalas Chapter 3)
Constraint on Cosmic Reionization from High-z QSO Spectra
Effects of early reionization on the formation of galaxies
Presentation transcript:

1 / 16 Numerical Simulations for Reionization of the Universe Nakamoto, T. (Univ. of Tsukuba) Hiroi, K. Umemura, M. 1. Why Reionization by 3-D RT ? 2. TsuCube Project 3. Tsukuba's New Code

2 / Why Reionization ? -Radiation Feedback ---- Effects for Following Generation - Photoionization - Photodissociation - Photo Heating -Observation ---- Probe for First Generation - Emissions - Absorptions

3 / 16 3D Reionization Calculations ・ Photon Conservation Method (+ Tree Method) Abel et al. 1999, Abel & Wandelt 2001, Razoumov et al ・ Optically Thin Variable Eddington Tensor Formalism Gnedin & Abel 2001 ・ Direct Incident Radiation Susa & Umemura ・ Monte Carlo 3D RT Ciardi et al. 2001, Maselli, Ferrara, & Ciardi 2003 ・ Grid Base 3D RT with Short Characteristics Nakamoto, Umemura, & Susa 2001 w/ HD w/o HD

4 / 16 N 3 = in (8Mpc) 3, N angle = Radiative Transfer Ionization Equilibrium Isotropic background UV: I 21 =0.1 Zel’dovich approximation: z = 15 An Example: Evolution of Ionization State Nakamoto, Umemura, & Susa 2001 Neutral Fraction:

5 / 16 Shadowing Effect InhomogeneousHomogeneous

6 / 16 N 3 = in (8Mpc) 3, N angle = Radiative Transfer Ionization Equilibrium Isotropic background UV: I 21 =0.1 Nakamoto, Umemura, & Susa 2001 Neutral Fraction: But... * Steady Solution (No Time Evolution) * Only Background Radiation (No Point Source) * Isothermal (No Temperature Evolution) * Only One Incident UV Spectrum ( I ν ∝ ν -1 )

7 / 16 We want to update our code! 1. Point Sources in Computational Domain 2. Time Evolution 3. Various Types Incident UV Spectrum 4. Temperature Evolution We can apply our new code to more problems!

8 / TsuCube Project Comparison of 3D RT codes Common Test Problems: Test #1, #2, #3 Groups/Codes: * CRASH (Ferrara, Ciardi, Maselli) * CORAL (Iliev) * OTVET (Gnedin, Abel) * Cen * Razoumov * Tsukuba (Nakamoto, Umemura, Hiroi) Deadline: January 31, 2004 (A. Ferrara, B. Ciardi...)

9 / 16 X e -R relation I-front propagation (Time Evolution) UV each grid point computation speed Test Problem 1: Input Output no dynamics

10 / 16 Test Problem 2: Input no dynamics (1,1,1) (128,128,128) non-isothermal (Temperature Change should be followed.)

11 / 16 Test Problem 3: Input no dynamics non-isothermal (Temperature Change should be followed.)

12 / 16 Tsukuba's New Code Ionization State Radiative Transfer Solver 1. Short Characteristics with point source(s) 2. ART (Accurate RT) Temperature Evolution Incident UV Spectrum * 3 (6)-frequency method * arbitrary spectrum Time Evolution * 2nd order implicit scheme new! * H, He 3. New Code

13 / 16 Point Source(s) in Computational Domain Radiation Energy Density Distance RT: Short Characteristics

14 / 16 Time Evolution 2nd order implicit scheme (Crank-Nicholson)

15 / 16 Spherically Sym. Solution by 1-D code J (Mean Intensity) X HI (Neutral Frac.) 10 8 yr 10 6 yr 10 4 yr [pc] R log J log X HI Time Evolution TsuCube Test #1

16 / Summary * Reionization Simulations * TsuCube Project: Comparison of 3D RT Codes * Developement of a New Code Point Sources Time Evolution of Ionization State Various Incident UV Spectra Temperature Evolution