Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.

Slides:



Advertisements
Similar presentations
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Advertisements

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Introduction to Biology
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: The Key Roles of Cell Division The continuity of life – Is based upon.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Multicellular organisms depend on cell division for:
● The ability of organisms to reproduce best distinguishes living things from nonliving matter
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Cell Cycle and Mitosis Honors Biology.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 12~ The Cell Cycle Biology is the only subject in which multiplication is the same thing as division…
Overview: The Key Roles of Cell Division
Fig Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings INTERPHASE G1G1 S (DNA synthesis) G2G2 Cytokinesis Mitosis MITOTIC (M) PHASE Ch.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Students Get handout – FRQs Pull out LL for check Cell phones in bin – off or muted….please & thank you Chapter 12: The Cell Cycle.
Chapter 12 The Cell Cycle. Overview: The Key Roles of Cell Division The continuity of life – Is based upon the reproduction of cells, or cell division.
CH 12 NOTES, part 1: Chromosomes, the Cell Cycle, and Cell Division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 12: The Cell Cycle Tomorrow Pre-lab – Mitosis only (NOT meiosis – Lab 3) Mitosis lab (Make-up is Thursday 7:30 AM)b turn in notebooks at end (Have.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Why Cells divide? In unicellular organisms, division of one cell reproduces the.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms depend on cell division for –Development from a fertilized.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Slide 1 Chapter 12: The Cell Cycle. Slide 2 Fig The Cell Cycle.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 9 b The Cell Cycle. Cell Division: Key Terms b Genome: cell’s genetic information b Somatic (body cells) cells b Gametes (germ cells): sperm and.
The Cell Cycle. In unicellular organisms, division of one cell reproduces the entire organism In unicellular organisms, division of one cell reproduces.
CHAPTER 12 The Cell Cycle. The Key Roles of Cell Division cell division = reproduction of cells All cells come from pre-exisiting cells Omnis cellula.
Fig Origin of replication Two copies of origin E. coli cell Bacterial chromosome Plasma membrane Cell wall Origin.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cycle.
THE CELL CYCLE AND MITOSIS UNIT 3 ORGANIZATION AND DEVELOPMENT.
Overview: The Key Roles of Cell Division The ability of organisms to reproduce best distinguishes living things from nonliving matter The continuity of.
Chapter 12 The Cell Cycle Lab 3 Mitosis and Meiosis.
Cell reproduction and the division of the NUCLEUS and CYTOPLASM.
1 The Cell Cycle and How Cells Divide. 2 Review: Vocabulary - Chromosomes Chromosome: “spool” to hold DNA in the nucleus Homologous: pairs of chromosomes.
Multicellular organisms depend on cell division for: – Development from a fertilized cell – Growth – Repair.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 12 The Cell Cycle.
 Purpose of cell division › Unicellular organisms  Reproduction › Multicellular organisms  Development from a fertilized cell  Growth  Repair.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Lecture #19: Honors Biology Ms. Day
The Cell Cycle. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic cell division consists of: – ________, the division.
Fig Fig µm200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Key Roles of Cell Division The continuity of life is based upon the reproduction.
Chapter 12 The Cell Cycle.  The continuity of life  Is based upon the reproduction of cells, or cell division.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 12 The Cell Cycle.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Chapter 12 The Cell Cycle.
Fig Figure 12.1 How do a cell’s chromosomes change during cell division?
Chapter 15 The Eukaryotic Cell Cycle, Mitosis, & Meiosis
Chapter 12 The Cell Cycle.
Cell Cycle Review.
The Cell Cycle and How Cells Divide
Chapter 12 The Cell Cycle.
The Cell Cycle.
The Cell Cycle and How Cells Divide
Lecture #19: Honors Biology Ms. Day
Chapter 12 The Cell Cycle.
Presentation transcript:

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Mitosis The Cell Cycle

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Overview: The Key Roles of Cell Division Life continues because of the reproduction of cells, or cell division Figure 12.1

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Unicellular organisms – Reproduce by cell division 100 µm (a) Reproduction. An amoeba, a single-celled eukaryote, is dividing into two cells. Each new cell will be an individual organism (LM). Figure 12.2 A

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Multicellular organisms depend on cell division for – Development from a fertilized cell – Growth – Repair 20 µm200 µm (b) Growth and development. This micrograph shows a sand dollar embryo shortly after the fertilized egg divided, forming two cells (LM). (c) Tissue renewal. These dividing bone marrow cells (arrow) will give rise to new blood cells (LM). Figure 12.2 B, C

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cell division results in genetically identical daughter cells Cells duplicate their genetic material – Before they divide, ensuring that each daughter cell receives an exact copy of the genetic material, DNA.

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cellular Organization of the Genetic Material A cell’s endowment of DNA, its genetic information – Is called its genome

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The DNA molecules in a cell – Are packaged into chromosomes 50 µm Figure 12.3

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic chromosomes In animals – Somatic (body) cells have two sets of chromosomes – Gametes (sexual cells) have one set of chromosomes

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chromatin A combination of DNA and protein that condenses and becomes visible during cell division

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Distribution of Chromosomes During Cell Division In preparation for cell division – DNA is replicated and the chromosomes condense

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Each duplicated chromosome – Has two sister chromatids, which separate during cell division 0.5 µm Chromosome duplication (including DNA synthesis) Centromere Separation of sister chromatids Sister chromatids Centromeres Sister chromatids A eukaryotic cell has multiple chromosomes, one of which is represented here. Before duplication, each chromosome has a single DNA molecule. Once duplicated, a chromosome consists of two sister chromatids connected at the centromere. Each chromatid contains a copy of the DNA molecule. Mechanical processes separate the sister chromatids into two chromosomes and distribute them to two daughter cells. Figure 12.4

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Eukaryotic cell division consists of – Mitosis, the division of the nucleus – Cytokinesis, the division of the cytoplasm

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Phases of the Cell Cycle The cell cycle consists of – The mitotic phase – Interphase INTERPHASE G1G1 S (DNA synthesis) G2G2 Cytokinesis Mitosis MITOTIC (M) PHASE Figure 12.5

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Interphase can be divided into subphases – G 1 phase – S phase – G 2 phase

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The mitotic phase – Is made up of mitosis and cytokinesis

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Mitosis consists of five distinct phases – Prophase – Prometaphase G 2 OF INTERPHASE PROPHASE PROMETAPHASE Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Kinetochore Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore microtubule Figure 12.6 Nonkinetochore microtubules

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings – Metaphase – Anaphase – Telophase Centrosome at one spindle pole Daughter chromosomes METAPHASEANAPHASETELOPHASE AND CYTOKINESIS Spindle Metaphase plate Nucleolus forming Cleavage furrow Nuclear envelope forming Figure 12.6

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Spindle: A Closer Look The spindle – Is an apparatus of microtubules that controls chromosome movement during mitosis

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Some spindle microtubules – Attach to the kinetochores of chromosomes and move the chromosomes to the metaphase plate CentrosomeAster Sister chromatids Metaphase Plate Kinetochores Overlapping nonkinetochore microtubules Kinetochores microtubules Centrosome Chromosomes Microtubules 0.5 µm 1 µm Figure 12.7

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In anaphase, sister chromatids separate – And move along the kinetochore microtubules toward opposite ends of the cell Spindle pole Kinetochore Figure 12.8

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings telophase – Genetically identical daughter nuclei form at opposite ends of the cell

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Cytokinesis: A Closer Look In animal cells – Cytokinesis occurs by a process known as cleavage, forming a cleavage furrow Cleavage furrow Contractile ring of microfilaments Daughter cells 100 µm (a) Cleavage of an animal cell (SEM) Figure 12.9 A

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In plant cells, during cytokinesis – A cell plate forms Daughter cells 1 µm Vesicles forming cell plate Wall of patent cell Cell plate New cell wall (b) Cell plate formation in a plant cell (SEM) Figure 12.9 B

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Mitosis in a plant cell 1 Prophase. The chromatin is condensing. The nucleolus is beginning to disappear. Although not yet visible in the micrograph, the mitotic spindle is staring to from. Prometaphase. We now see discrete chromosomes; each consists of two identical sister chromatids. Later in prometaphase, the nuclear envelop will fragment. Metaphase. The spindle is complete, and the chromosomes, attached to microtubules at their kinetochores, are all at the metaphase plate. Anaphase. The chromatids of each chromosome have separated, and the daughter chromosomes are moving to the ends of cell as their kinetochore microtubles shorten. Telophase. Daughter nuclei are forming. Meanwhile, cytokinesis has started: The cell plate, which will divided the cytoplasm in two, is growing toward the perimeter of the parent cell Nucleus Nucleolus Chromosome Chromatine condensing Figure 12.10

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Binary Fission Prokaryotes (bacteria) – Reproduce by a type of cell division called binary fission

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings In binary fission – The bacterial chromosome replicates – The two daughter chromosomes actively move apart Origin of replication E. coli cell Bacterial Chromosome Cell wall Plasma Membrane Two copies of origin Origin Chromosome replication begins. Soon thereafter, one copy of the origin moves rapidly toward the other end of the cell. 1 Replication continues. One copy of the origin is now at each end of the cell. 2 Replication finishes. The plasma membrane grows inward, and new cell wall is deposited. 3 Two daughter cells result.4 Figure 12.11

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Evolution of Mitosis Since prokaryotes came before eukaryotes by billions of years – It is likely that mitosis evolved from bacterial cell division Certain protists – Exhibit types of cell division that seem in between binary fission and mitosis carried out by most eukaryotic cells

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The cell cycle is regulated by a molecular control system The frequency of cell division – Varies with the type of cell These cell cycle differences – Result from regulation at the molecular level

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cycle Control System The sequential events of the cell cycle – Are directed by a distinct cell cycle control system, which is similar to a clock Figure Control system G 2 checkpoint M checkpoint G 1 checkpoint G1G1 S G2G2 M

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The clock has specific checkpoints – Where the cell cycle stops until a go-ahead signal is received G 1 checkpoint G1G1 G1G1 G0G0 (a) If a cell receives a go-ahead signal at the G 1 checkpoint, the cell continues on in the cell cycle. (b) If a cell does not receive a go-ahead signal at the G 1 checkpoint, the cell exits the cell cycle and goes into G 0, a nondividing state. Figure A, B

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Loss of Cell Cycle Controls in Cancer Cells Cancer cells – Do not respond normally to the body’s control mechanisms – Form tumors

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Malignant tumors invade surrounding tissues and can metastasize – Exporting cancer cells to other parts of the body where they may form secondary tumors Cancer cells invade neighboring tissue. 2 A small percentage of cancer cells may survive and establish a new tumor in another part of the body. 4 Cancer cells spread through lymph and blood vessels to other parts of the body. 3 A tumor grows from a single cancer cell. 1 Tumor Glandular tissue Cancer cell Blood vessel Lymph vessel Metastatic Tumor Figure 12.19

Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Life Span of Human Body Cells: Cell type Length of time Red blood 120 days Lymphocytes Over one year Other white 10 hours Platelets 10 days Bone years BrainLifetime Colon3-4 days Skin19-34 days Spermatozoa 2-3 days Stomach 2 days