Quasars, Active Galaxies, and Gamma-Ray Bursters Chapter Twenty-Seven.

Slides:



Advertisements
Similar presentations
February 9, 11:00 am. The unusually bright centers found in some galaxies are called 1.active galactic nuclei. 2.starbursts. 3.halos. 4.supermassive.
Advertisements

25. High-Energy Celestial Objects
“Do I have your attention…?”
1 Galactic Groupings and Active Galactic Nuclei Topics Clusters and superclusters; Giant Elliptical Formation Starburst and other explosive galaxies; Seyferts,
Quasars, Active Galactic Nuclei (AGN), and Black Holes What is an “active galaxy” or “quasar”? How is it different from a “normal” galaxy? 1. Much, much.
Active Galactic Nuclei Chapter 28 Revised Active Galactic Nuclei Come in several varieties; Starburst Nuclei – Nearby normal galaxies with unusually.
Active Galactic Nuclei Astronomy 315 Professor Lee Carkner Lecture 19.
QUASARS Monsters of the ancient Universe Professor Jill Bechtold Steward Observatory Tucson Amateur Astronomers, Dec. 6, 2002.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Galaxies Types Dark Matter Active Galaxies Galaxy Clusters & Gravitational Lensing.
Galaxies with Active Nuclei Chapter 17. You can imagine galaxies rotating slowly and quietly making new stars as the eons pass, but the nuclei of some.
Chapter 25: Quasars and active galaxies Features of quasars Quasars and distant galaxies Seyfert and radio galaxies Active galactic nuclei Supermassive.
Class 25 : Active galactic nuclei Discovery of AGN (3C 273). What are AGN? Radio galaxies. AGN and colliding galaxies.
Active Galaxies PHYS390 Astrophysics Professor Lee Carkner Lecture 22.
Discovering the Essential Universe
Quasars – Unsolved mysteries?
ASTR100 (Spring 2008) Introduction to Astronomy Galaxy Evolution & AGN Prof. D.C. Richardson Sections
Active Galactic Nuclei (or AGN) Seyfert galaxies have very small (unresolved), extremely powerful centers! The strength of the emission lines vary on timescales.
Galaxies and the Foundation of Modern Cosmology III.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 24 Normal and Active Galaxies. The light we receive tonight from the most distant galaxies was emitted long before Earth existed.
Quasars and Other Active Galaxies
Galaxies Live in Clusters Hickson Fornax. Coma Virgo.
Chapter 24 Galaxies. 24.1Hubble’s Galaxy Classification 24.2The Distribution of Galaxies in Space 24.3Hubble’s Law 24.4Active Galactic Nuclei Relativistic.
Most of the power of galaxies come from the stars Almost all nearby galaxies Some galaxies have very bright sources right at the center Can be as bright.
 Galaxies with extremely violent energy release in their nuclei  Active Galactic Nuclei (AGN)  Up to many thousand times more luminous than the entire.
This is the Local Group of galaxies, about 45 galaxies within about 1 Mpc of the Milky Way. Most are dwarf-elliptical or iregular. A distance of one million.
Our goals for learning How did Hubble prove galaxies lie beyond our galaxy? How do we observe the life histories of galaxies? How did galaxies form? Why.
Lecture 40 Galaxies (continued). Evolution of the Universe. Characteristics of different galaxies Redshifts Unusual Galaxies Chapter 18.6  18.9.
Objectives Describe how astronomers classify galaxies.
© 2010 Pearson Education, Inc. Chapter 21 Galaxy Evolution.
Quasars Chapter 17. Topics Quasars –characteristics –what are they? –what is their energy source? –where are they? –how old are they? –interactions of.
Active galaxies are much more luminous than normal galaxies; they emit much of their radiation in non-visible light. That is, they give Non thermal radiation.
Lecture 6; April Astro-2: History of the Universe.
ASTR 113 – 003 Spring 2006 Lecture 11 April 12, 2006 Review (Ch4-5): the Foundation Galaxy (Ch 25-27) Cosmology (Ch28-29) Introduction To Modern Astronomy.
15.4 Quasars and Other Active Galactic Nuclei Our Goals for Learning What are quasars? What is the power source for quasars and other active galactic nuclei?
Quasi-Stellar Objects (QSOs) and Schmidt’s Realization.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
30 Nov 2000ASTR103, GMU, Dr. Correll1 Ch 16--Quasars and AGNs.
Quasars and Active Galactic Nuclei
Active Galactic Nuclei Chapter 25 Revised Active Galactic Nuclei Come in several varieties; Starburst Nuclei – Nearby normal galaxies with unusually.
Active Galaxies and Supermassive Black Holes Chapter 17.
Quasars and Other Active Galaxies
Active Galactic Nuclei Chapter 26 Revised Active Galactic Nuclei Come in several varieties; Starburst Nuclei – Nearby normal galaxies with unusually.
Universe Tenth Edition Chapter 24 Quasars and Active Galaxies Roger Freedman Robert Geller William Kaufmann III i  clicker Questions.
© 2010 Pearson Education, Inc. Galaxies. © 2010 Pearson Education, Inc. Hubble Deep Field Our deepest images of the universe show a great variety of galaxies,
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
Most of the power of ordinary galaxies come from the stars Some galaxies have very bright sources right at the center Can be as bright as a galaxy, or.
Peculiar (colliding) Galaxies and Active Galaxies Colliding galaxies  tidal distortions, star formation, evolution (role of simulations) Active galaxies.
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Astronomy 1020 Stellar Astronomy Spring_2016 Day-38.
Universe Tenth Edition Chapter 24 Quasars and Active Galaxies Roger Freedman Robert Geller William Kaufmann III.
© 2017 Pearson Education, Inc.
Galaxies with Active Nuclei
Announcements Grades for third exam are now available on WebCT
Chapter 25 Active Galaxies and Quasars
Quasars and Active Galaxies
Peculiar (colliding) Galaxies and Active Galaxies
Quasars, Active Galaxies, and super-massive black holes
Chapter 21 Galaxy Evolution
Quasars.
Chapter 21 Galaxy Evolution and Black Holes
Active Galaxies.
Quasars and Active Galactic Nuclei
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
AGN: Quasars By: Jay Hooper.
Galaxies With Active Nuclei
NOTES: Active Galactic Nuclei (AGN)
Galaxies With Active Nuclei
Presentation transcript:

Quasars, Active Galaxies, and Gamma-Ray Bursters Chapter Twenty-Seven

Guiding Questions 1.Why are quasars unusual? How did astronomers discover that they are extraordinarily distant and luminous? 2.What evidence showed a link between quasars and galaxies? 3.How are Seyfert galaxies and radio galaxies related to quasars? 4.How can material ejected from quasars appear to travel faster than light? 5.What could power the incredible energy output from active galaxies? 6.Why do many active galaxies emit ultrafast jets of material? 7.What are gamma-ray bursters? How did astronomers discover how far away they are?

Quasars look like stars but have huge redshifts These redshifts show that quasars are several hundred megaparsecs or more from the Earth, according to the Hubble law

To be seen at such large distances, quasars must be very luminous, typically about 1000 times brighter than an ordinary galaxy

About 10% of all quasars are strong sources of radio emission and are therefore called “radio-loud”; the remaining 90% are “radio-quiet”

Some of quasars’ energy is synchrotron radiation produced by high-speed particles traveling in a strong magnetic field

Quasars are the ultraluminous centers of distant galaxies

Seyfert galaxies seem to be nearby, low-luminosity, radio-quiet quasars Seyfert galaxies are spiral galaxies with bright nuclei that are strong sources of radiation

Radio galaxies are elliptical galaxies located midway between the lobes of a double radio source

Relativistic particles are ejected from the nucleus of a radio galaxy along two oppositely directed beams

Seyferts and radio galaxies bridge the gap between normal galaxies and quasars

Blazars are bright, starlike objects that can vary rapidly in their luminosity They are probably radio galaxies or quasars seen end-on, with a jet of relativistic particles aimed toward the Earth

Quasars, blazars, Seyferts, and radio galaxies are active galaxies Quasars, blazars, and Seyfert and radio galaxies are examples of active galaxies The energy source at the center of an active galaxy is called an active galactic nucleus (AGN) Rapid fluctuations in the brightness of active galaxies indicate that the region that emits radiation is quite small

SuperluminalMotionSuperluminalMotion

Supermassive black holes are the “central engines” that power active galactic nuclei The preponderance of evidence suggests that an active galactic nucleus consists of a supermassive black hole onto which matter accretes As gases spiral in toward the supermassive black hole, some of the gas may be redirected to become two jets of high- speed particles that are aligned perpendicularly to the accretion disk

Quasars, blazars, and radio galaxies may be the same kind of object seen from different angles

An observer sees a radio galaxy when the accretion disk is viewed nearly edge-on, so that its light is blocked by a surrounding torus

At a steeper angle, the observer sees a quasar If one of the jets is aimed almost directly at the Earth, a blazar is observed

Gamma-ray bursters produce amazingly intense flashes of radiation Short, intense bursts of gamma rays are observed at random times coming from random parts of the sky The origin of short-duration gamma-ray bursters is unknown

By observing the afterglow of long-duration gamma-ray bursters, astronomers find that these objects have very large redshifts and appear to be located within distant galaxies

The bursts are correlated with supernovae, and may be due to an exotic type of supernova called a collapsar

Key Words accretion disk active galactic nucleus (AGN) active galaxy blazar collapsar double radio source Eddington limit gamma-ray burster head-tail source nonthermal radiation polarized radiation quasar radio galaxy radio lobes Seyfert galaxy superluminal motion supermassive black hole thermal radiation