Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009.

Slides:



Advertisements
Similar presentations
Quantum Theory of Collective Atomic Recoil in Ring Cavities
Advertisements

Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Arthur Dogariu and Richard Miles
In Search of the “Absolute” Optical Phase
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Yoan Léger Laboratory of Quantum Opto-electronics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Claus Zimmermann Physikalisches Institut der Universität Tübingen Superradiance and Collective Atomic Recoil Laser: what atoms and fire flies have in common.
Patrick Sebbah Nicolas Bachelard, Sylvain Gigan Institut Langevin, ESPCI ParisTech CNRS UMR 7587, Paris A. Christian Vanneste, Xavier Noblin LPMC – Université.
Understanding Strong Field Closed Loop Learning Control Experiments PRACQSYS August 2006.
Generation of short pulses
Anderson localization in BECs
Fluctuations in Strongly Interacting Fermi Gases Christian Sanner, Jonathon Gillen, Wujie Huang, Aviv Keshet, Edward Su, Wolfgang Ketterle Center for Ultracold.
EE 230: Optical Fiber Communication From the movie Warriors of the Net Lecture 8 Fiber Amplifiers.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Energy Level diagram for n- 2 level atoms. Radiation from an Extended Sample Destroy photon Raise Energy level Interaction with Radiation field.
1 09:05-09:55 am, Wednesday, September 22, 2010 CHEM 8152: Analytical Spectroscopy Smith 1111, University of Minnesota Resonant cavities Gain Threshold.
Angular correlation in a speckle pattern of cold atomic clouds Eilat 2006 Ohad Assaf and Eric Akkermans Technion – Israel Institute of Technology.
Pump-Probe Spectroscopy Chelsey Dorow Physics 211a.
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
Masters Course: Experimental Techniques Detection of molecular species (with lasers) Techniques Direct absorption techniques Cavity Ring Down Cavity Enhanced.
COLLISIONS IN ULTRACOLD METASTABLE HELIUM GASES G. B. Partridge, J.-C. Jaskula, M. Bonneau, D. Boiron, C. I. Westbrook Laboratoire Charles Fabry de l’Institut.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Suppression of a Parasitic Pump Side-Scattering in Backward Raman Amplifiers of Laser Pulses in Plasmas A.A. Solodov, V. M. Malkin, N. J. Fisch.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Long-Lived Dilute Photocarriers in Individualy-suspended Single-Walled Carbon Nanotubes Y. Hashimoto, A. Srivastava, J. Shaver, G. N. Ostojic, S. Zaric,
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Light-induced instabilities in large magneto-optical traps G. Labeyrie, F. Michaud, G.L. Gattobigio, R. Kaiser Institut Non Linéaire de Nice, Sophia Antipolis,
Transverse Profiling of an Intense FEL X-Ray Beam Using a Probe Electron Beam Patrick Krejcik SLAC National Accelerator Laboratory.
Interaction of laser pulses with atoms and molecules and spectroscopic applications.
Fourier-transform coherent anti-Stokes Raman scattering microscopy Jennifer P. Ogilvie et al. Opt. Lett. 31, 480 (2006) Kazuya MORI MIYASAKA Lab.
Light scattering and atom amplification in a Bose- Einstein condensate March 25, 2004 Yoshio Torii Institute of Physics, University of Tokyo, Komaba Workshop.
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
1 Superluminal Light Pulses, Subluminal Information Transmission Dan Gauthier and Michael Stenner * Duke University, Department of Physics, Fitzpatrick.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Quantum Effects in BECs and FELs Nicola Piovella, Dipartimento di Fisica and INFN-Milano Rodolfo Bonifacio, INFN-Milano Luca Volpe (PhD student), Dipartimento.
Quantum interference phenomenon Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program.
Refractive index enhancement with vanishing absorption in an atomic vapor Deniz Yavuz, Nick Proite, Brett Unks, Tyler Green Department of Physics, University.
Refractive Index Enhancement without Absorption N. A. Proite, J. P. Sheehan, J. T. Green, D. E. Sikes, B. E. Unks, and D. D. Yavuz University of Wisconsin,
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
FREQUENCY-AGILE DIFFERENTIAL CAVITY RING-DOWN SPECTROSCOPY
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Instability of optical speckle patterns in cold atomic gases ? S.E. Skipetrov CNRS/Grenoble (Part of this.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Investigation of the Saturation Mechanism of Recoil-induced Resonances Joel A. Greenberg, Marcos Oria, and Daniel J. Gauthier Duke University 5/28/2008.
Multi-photon Absorption Rates for N00N States William Plick, Christoph F. Wildfeuer, Jonathan P. Dowling: Hearne Institute for Theoretical Physics, LSU.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Free Electron Laser Studies
Speaker: Nguyen Huy Bang
Collective Scattering of Light From Cold and Ultracold Atomic Gases
8.2.2 Fiber Optic Communications
Superfluorescence in an Ultracold Thermal Vapor
Marco Polo, Daniel Felinto and Sandra Vianna Departamento de Física
Fiber Laser Part 1.
Presentation transcript:

Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009 Cavity-less Rayleigh Superfluorescence in a Thermal Gas FIP

Superfluorescence (SF) L Pump Dicke, Phys. Rev. 93, 99 (1954); Bonifacio & Lugiato, Phys. Rev. A 11, 1507 (1975), Polder et al., Phys. Rev. A 19, 1192 (1979), Rehler & Eberly, Phys. Rev A 3, 1735 (1971) W N ‘endfire’ modes W 2 /L 

SF Threshold time Power  SF  sp /N  sp Cooperative emission produces short, intense pulse of light P peak  N 2 Delay time (  D ) before pulse occurs Threshold density/ pump power DD P peak 1 Spontaneous Emission Amplified Spontaneous Emission (ASE) Superfluorescence (SF) SF Thresh Cooperativity Malcuit, M., PhD Dissertation (1987); Svelto, Principles of Lasers, Plenum (1982)

New Regime: Thermal Free-space SF Pump (F) Cold atoms Pump (B) Detector (B) Detector (F) - T=20  K - L=3 cm, R=150  m  - N~10 9 Rb atoms - P F/B ~4 mW -  F2  F’3 =5  F =R 2 / L~1 NO CAVITY! NOT BEC! ≠ Slama et al. ≠ Inouye et al. Inouye et al. Science 285, 571 (1999); Slama et al. PRL 98, (2007) * Counterpropagating, * Large gain path length 2 collinear pump beams 1 1) Wang et al. PRA 72, ; 2) Yoshikawa PRL 94,

Results - SF t (  s) Power (  W ) Forward Backward F/B Pumps MOT beams Light persists until N falls below threshold F/B temporal correlations ~1 photon/atom  large fraction of atoms participate on off Wang et al. PRA 72, (2005)

DD time Power P peak P F/B (mW) P peak (  W)  D (  s) P F/B (mW) Density/Pump power thresholds P peak  P F/B  D  (P F/B ) -1/2 Results - SF Consistent with CARL superradiance * *Piovella et al. Opt. Comm. 187, 165 (2001)

SF Mechanism What is the mechanism responsible for SF?

Probe Pump (F) Cold atoms Pump (B) Detector (B) - T=20  K - L=3 cm, R=150  m - N~10 9 Rb atoms - P F/B ~4 mW -  F2  F’3 =5  Detector (F) (  p =  +  ) What is the mechanism responsible for SF? SF Mechanism

Probe Spectroscopy Forward Detector Backward Detector (FWM)  (kHz) Rayleigh SF signal time (  s) Probe Power Rayleigh pump beam alignment Raman pump beam alignment SF Power Raman  SF

Probe Spectroscopy Forward Detector Backward Detector (FWM)  (kHz) Rayleigh SF signal time (  s) Probe Power Rayleigh pump beam alignment Raman pump beam alignment SF Power Raman  SF Rayleigh scattering is critical for observation of SF

Observe free-space superfluorescence in a cold, thermal gas Large F/B gain path length + pair of pump beams Spectroscopy and beatnote imply Rayleigh scattering as source of SF Temporal correlation between forward/backward radiationConclusions

Study dependence of P peak and  D on N Look at competition between vibrational Raman and Rayleigh SF Future Work

Beatnote  (kHz) Look at beatnote between probe beam and SF light as probe frequency is scanned Power (F)

Beatnote  (kHz) time (  s) 1/  f  f~450kHz  f SF ~-50kHz Look at beatnote between probe beam and SF light as probe frequency is scanned

Weak probe Forward: Rayleigh backscatteringBackward: Recoil-mediated FWM  (kHz) Probe (  p =  +  ) Pumps (  ) I out /I in Forward Backward   Rayleigh

Weak probe Probe (  p =  +  ) Pumps (  ) Forward Backward FWM Above Thresh Below thresh  (kHz)

Weak probe Probe (  p =  +  ) Pumps (  ) Forward Backward Forward  (kHz)

Coherence Time time Power F/B Pumps on off  off 1 PRPR PRPR

Lin || Lin Power time (  s) Pumps (  ) Forward Backward

DD time Power P peak P peak (  W) Results - SF *Piovella et al. Opt. Comm. 187, 165 (2001) OD  N

CARL Regimes Slama Dissertation (2007) Quantum CARL Ultracold Atoms/BEC Good Cavity:  <  r Bad Cavity:  >  r Quantum:  r >G Semiclassical:  r <G In resonator Free space MIT (2003) MIT (1999) Tub (2006) Tub (2003) Tub (2006) Thermal

Conclusions Rayleigh backscattering Recoil-mediated FWM  (kHz)

Superfluorescence (SF) L,N Pump Power  SF  sp /N  sp DD P peak Cooperative emission produces short, intense pulse of light Emission occurs along ‘endfire’ modes P peak  N 2

Superfluorescence (SF) L,N Pump gL 1 Spontaneous Emission Amplified Spontaneous Emission (ASE) Superfluorescence (SF) SF Thresh

Weak probe Forward: Rayleigh backscatteringBackward: Recoil-mediated FWM  (kHz) Probe (  p =  +  ) Pumps (  ) I out /I in Forward Backward   Rayleigh

Probe Spectroscopy Forward DetectorBackward Detector (FWM)  (kHz) Rayleigh SF signal time (  s) Probe Power Rayleigh pump beam alignment Raman pump beam alignment SF Power Raman  SF

Forward DetectorBackward Detector (FWM) Probe Spectroscopy  (kHz)  Rayleigh SF signal time (  s) Probe Power Rayleigh pump beam alignment Raman pump beam alignment SF Power Rayleigh scattering is critical for observation of SF

Observation of Cavity-less Rayleigh Superfluorescence in a Thermal Gas Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009

Our Setup Pump (F) Cold atoms Pump (B) Detector (B) Detector (F) - T=20  K - L=3 cm, R=150  m - N~10 9 Rb atoms - P F/B ~4 mW -  F2  F’3 =5  - No cavity - Thermal atoms - Counterprop. pumps Inouye et al. Science 285, 571 (1999); Slama et al. PRL 98, (2007)

Motivation Collective effects Self-organization Experimental results Conclusions/Future workOutline