1/16/2016 1 Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker

Slides:



Advertisements
Similar presentations
6/1/ Runge 4 th Order Method Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Advertisements

5/1/ Finite Difference Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
5/19/ Runge 4 th Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/8/ Euler Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/8/ Gauss Quadrature Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
8/15/ Binary Representation Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
9/14/ Trapezoidal Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
9/22/ Runge 2 nd Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
10/8/ Propagation of Errors Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
10/20/ Runge 2 nd Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/16/ Euler Method Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
12/1/ Trapezoidal Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
6/13/ Secant Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
Trapezoidal Rule of Integration
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Gauss Quadrature Rule of Integration
Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Spline Interpolation Method
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Direct Method of Interpolation
Spline Interpolation Method
Lagrangian Interpolation
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Trapezoidal Rule of Integration
Spline Interpolation Method
Lagrangian Interpolation
Binary Representation
Industrial Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
Simpson’s 1/3rd Rule of Integration
Binary Representation
Newton’s Divided Difference Polynomial Method of Interpolation
Binary Representation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Presentation transcript:

1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker Transforming Numerical Methods Education for STEM Undergraduates

Runge-Kutta 4 th Order Method

3 Runge-Kutta 4 th Order Method where For Runge Kutta 4 th order method is given by

How to write Ordinary Differential Equation Example is rewritten as In this case How does one write a first order differential equation in the form of

Example A polluted lake with an initial concentration of a bacteria is 10 7 parts/m 3, while the acceptable level is only 5x10 6 parts/m 3. The concentration of the bacteria will reduce as fresh water enters the lake. The differential equation that governs the concentration C of the pollutant as a function of time (in weeks) is given by Find the concentration of the pollutant after 7 weeks. Take a step size of 3.5 weeks.

Solution Step 1:

Solution Cont is the approximate concentration of bacteria at

Solution Cont Step 2:

Solution Cont is the approximate concentration of bacteria at

Solution Cont The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as The solution to this nonlinear equation at t=7 weeks is

Comparison with exact results Figure 1. Comparison of Runge-Kutta 4th order method with exact solution

Step size × ×10 6 − − − − − ×10 − ×10 − ×10 − ×10 −7 Effect of step size (exact) Table 1 Value of concentration of bacteria at 3 minutes for different step sizes

Effects of step size on Runge- Kutta 4 th Order Method Figure 2. Effect of step size in Runge-Kutta 4th order method

Comparison of Euler and Runge- Kutta Methods Figure 3. Comparison of Runge-Kutta methods of 1st, 2nd, and 4th order.

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit a_4th_method.html

THE END