Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui.

Slides:



Advertisements
Similar presentations
Identify how elements are arranged on the Periodic Table. F Fluorine atu 9 How many particles in the nucleus? Protons? Neutrons? Electrons? Now.
Advertisements

Unit 3 Part 2 The Periodic Table ICP Mr. Patel SWHS.
Chapter 7 periodic trends
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
THE PERIODIC TABLE.
Ionization Energy Hungry for Tater Tots? Mr. C at 7 years old.
The Nature of Molecules
Periodic Table.
Periodic Table – Filling Order
THE PERIODIC TABLE.
Energy Level Diagrams E
Neutron (no charge) Hydrogen 1 Proton 1 Electron Oxygen 8 Protons 8 Neutrons 8 Electrons a. b. proton (positive charge) electron (negative charge) Copyright.
Development of the Periodic Table. Mendeleev’s Periodic Table "...if all the elements be arranged in order of their atomic weights a periodic repetition.
Binary Compounds Metals (variable oxidation) + Nonmetals.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
CH. 2 atomic models electronic configuration oxidation numbers
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Periodic Table of Elements. gold silver helium oxygen mercury hydrogen sodium nitrogen niobium neodymium chlorine carbon.
H 1 N 7 P 15 As 33 Sb 51 Bi 83 O 8 S 16 Se 34 Te 52 Po 84 F 9 Cl 17 Br
Chemical Families. Groups of Elements   Lanthanides Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl.
Trends of the Periodic Table
Periodic Table Of Elements
Metals, Nonmetals, Metalloids
Ions Wednesday January 8, 2014
s p d (n-1) f (n-2) 6767 Periodic Patterns 1s1s1s1s 2s2s2s2s 3s3s3s3s 4s4s4s4s 5s5s5s5s 6s6s6s6s 7s7s7s7s 3d3d3d3d 4d4d4d4d 5d5d5d5d 6d6d6d6d 1s1s1s1s.
Organization of The Periodic Table Mrs. Russotto.
Bellwork, Fri. Sept. 14 Which element is LEAST likely to combine with another element to form a molecule? -Chlorine (Cl), a halogen -Iron (Fe), a metal.
Modern Periodic Table Objective:
Electron Configuration Filling-Order of Electrons in an Atom.
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
Electron Configuration
1 Hydro gen 1 3 Li Lithi um 2 1 Na Sodiu m 3 1919 K Potas sium 4 3737 Rb Rubid ium 5 5 Cs Cesiu m 6 8787 Fr Franc ium 7 4 Be Beryl lium 1212 Mg Magne sium.
D x 2 – y 2 Lanthanides Actinides G block Inrt P x P y P z D x y D x z D y z D z 2 New periodic table of elements Nodal point.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
Chapter 6 Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar.
Trends of the Periodic Table. Electronegativity ElectronegativityyElectronegativityy.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Electron Configuration
Periodic Table of Elements
TOPIC 0C: Atomic Theory.
The Periodic Table
1.7 Trends in the Periodic Table
The Periodic Table and Periodic Law
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Chemeketa Community College
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Groups of Elements 1A 8A H He 2A 3A 4A 5A 6A 7A Li Be B C N O F Ne Na
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
Periodic Trends Atomic Size Ionization Energy Electron Affinity
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
THE PERIODIC TABLE.
Periodic Table of the Elements
ТАБЛИЦА Б. Е. ЛИПОВА «STRUCTURE OF ATOMIC NUCLEUS”
Electron Configuration
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
PERIODIC TABLE OF ELEMENTS
Journal: Choose one of these Periodic Table ideas or come up with your own. Explain what different CATEGORIES/SECTIONS you would make to group your “Elements”
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Line Spectra and the Bohr Model
The Periodic Table Part I – Categories of Elements
1.5 Periodic Table: History & Trends
PeRiOdIc TaBlE of ElEmEnTs
Electron Configurations and the Periodic Table
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui

Drift Time Spectrometer for Heaviest Elements Ludwig-Maximilians-Universität MünchenMarch 2006Mustapha Laatiaoui Motivation Atom physics : Relativistic Effects Valence Electron Configuration Element Identification Experiments Drift time measurements on actinides Atoms and Molecules Concept for an Online-Spectrometer Prospects Overview:

5f 6d 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag Bh 108 Hs 109 Mt 11 Na 12 Mg 3 Li 4 Be 1 H 13 Al 5 B 7 N 14 Si 6 C 15 P 16 S F 17 Cl 16 Ar 10 Ne 2 He Ds Ce 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64 Gd 65 Tb 66 Dy 67 Ho 69 Tm 70 Yb 71 Lu 68 Er Pu Th 91 Pa 92 U 93 Np 95 Am 96 Cm 97 Bk 98 Cf 99 Es 101 Md 102 No 103 Lr 100 Fm 5f 6d 5f 6d 5f Lanthanides (4f) Actinides (5f) 6d s 2 6d 5 6d … Periodic Table of Elements 1

Relativistic Contraction For hydrogene-like mercury (Hg) with Z=80: a.u. V. Burke et al., Proc. Phys. Soc. London, 90, 297 (1967) 

Relativistic Contraction r max : Principal Maximum of the Wave Function of the Outermost Orbital J.P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973) P. Pyykkö, Phys. Scr. 20, 647 (1979)

{ For Uranium (Z=92) E [eV] Shift of Electronic Energy Levels

J.P. Desclaux At. Data Nucl. Data Tables 12, 311 (1973) Valence Electron Configuration & Element Identification r max : Principal Maximum of the Wave Function of the Outermost Orbit o o Fr Cs Rb K Na Li o 5f 3d4d4f

Mc Daniel et al Ion Mobility Spectrometry P.R. Kemper and M.T. Bowers J. Am. Chem. Soc. 112, 3231 (1990) T [10 -4 s] Co + : 3d 8, 3 F m Co + : 3d 7 4s 1, 3 F Intensity arb. units

Ionic Radii from Drift Time.. d r Ar r ion In Rigid Sphere Model : e: Charge N: Number Density of Buffer Gas Atoms  : Reduced Mass k B : Boltzmann Constant T eff : Effective Temperature : Collision Cross Section  : Higher Order Corrections Relative Measurements : K: Ion Mobility E: Electric Field Strength s: Ion path t drift : drift time

Experimental Setup cm Optical Fiber LPM QMS Buffer Gas Cell Buffer Gas Cell QPIG Channeltron 1x10 -2 mbar 5x10 -7 mbar 2x10 -4 mbar 4x10 -6 mbar TMP 700 l/s TMP 330 l/s TMP 230 l/s TMP 360 l/s Laser Beam 255 Fm Filament

V 220 V 200 V 20 V Laser Beams 188 V 040 z [mm] Computer Simulation SIMION 7 A ° The used Buffer Gas Cell For absolute Measurements!

Measurements PHD Thesis, Achim Dretzke, Mainz

Measurements T Fm D = 0.89(1) ms + T Cf D = 0.91(1) ms + T UO D = 1.09(1) ms + Ab Initio Theorie : J.P. Desclaux

Target Wheel Quadrupole Triplet Condenser Plates for Electric Field Dipole Magnets Beam Dump Quadrupole Triplet Buffer Gas Cell 254 No Beam Objectives: No (Z=102) to Db (Z=105) Z=102: 208 Pb ( 48 Ca,2n) 254 No (t 1/2 =55 s) 5 Ions/s Z=103: 209 Bi ( 48 Ca,2n) 255 Lr (t 1/2 =21.5 s) GSI

Electric Field ( 50 V/cm) 254 No Ion Beam + Drift Time Cell (100 mbar Ar Buffer Gas) Ion Guide Dynode Foils kV e-e- HI + Channeltron kV QMS  _Detector Wheel Fixed  _Detectors Development of an On Line Spectrometer Counts T D [ms] QMS : 40 u QMS : 254 u 30 cm Direct Measurement of T b D  T a,b D = T a D - T b D Trigger +

      Es s Es 246 7,7 m Es 245 1,3 m Es s Es 247 4,7 m Es m Es 249 1,70 h Es 250 2,22 h | 8,6 h Es h Es ,7 d Es ,4 d Es ,3 h | 275,7 d Es ,8 d Es 256 7,6 h | 22 m Fm 247 9,2 s | 35 s Fm 246 1,1 s Fm 245 4,2 s Fm s Fm 251 5,3 h Fm ,4 h Fm 253 3,0 d Fm 254 3,24 h Fm ,1 h Fm 256 2,63 h Fm 244 3,0 ms Fm 243 0,18 s Fm 242 0,8 ms Fm 249 2,6 m Fm 250 1,8 s | 39 m Fm ,5 d Fm 258 0,38 ms Fm 259 1,5 s Fm Es Md 247 2,9 s Md 252 2,3 m Md m | 28 m Md s Md s Md s Md 251 4,0 m Md 256 1,3 h Md m | 56 d Md 257 5,0 h No 250 0,25 ms No s No 252 2,39 s No 251 0,8 s No 253 1,7 m No 258 1,2 ms No m No 255 3,1 m No 256 3,1 s 103 Lr s Lr 253 1,5 s| 0,6 s Lr ,5 s Lr m Lr ,9 s Lr 258 4,35 s 104 Rf ms| 1,2 s Rf 255 1,4 s Rf  s Rf  s Rf 256 6,7 ms Rf 257 4,7 s Rf 259 3,1 s Rf s 105 Db 260 1,5 s Db 257 1,3 s Db 256 2,6 s Db 258 4,4 s Db s 106 Sg 263 0,3 s| 0,9 s Sg 259 0,48 s Sg 258 2,9 ms Sg 265 7,1 s Sg s Sg 261 0,23 s Sg 260 3,6 ms 107 Bh 262 8,0 ms| 102 ms Bh ,8 ms Bh ms 108 Hs 269 9,3 s Hs 265 0,8 ms| 1,7 ms Hs ms Hs 264 0,45 ms 109 Mt ms Mt 266 3,4 ms 110 Ds 271 1,1 ms| 56 ms Ds 273 0,076 |118 ms| ms Ds 269 0,17 ms Rg 274 9,26 ms Rg 272 1,5 ms Rg ,5 ms ,34 ms 113       ,6 s ,8 s ,51 s ms ms ,8 ms ,3 ms ms Rg 280 5,2 s       Bh ,14 s   Bh s?   Mt 270 7,16 ms   Rf ms ms ,10 s         Rg 279 0,17 s Mt 276 1,03 s Mt 275 9,7 ms Db m     Rf 267 2,3 h       Ds 279 0,18 s   ,0 s   ms s ,50 ms       Sg ,14 s Hs ,8 ms     ,69 s 6d Actinides Breeding in High Flux Nuclear Reactors Heavy Ion Induced Nuclear Fusion Reactions 7p ,16 s   Hs ,5 m Ds ,1 s Db ,1 h Prospects:   s   m   Ds 282 1,1 m   Hs m 162 Hs 270 2,4 s Db 259 0,5 s Rf m Lr 252 0,4 s Lr m Lr 262 3,6 h No ms No ms Md m Md ,8 d       Hs 266 2,3 ms Ds 270 0,1 ms| 6,0 ms Sg 262 6,9 ms   Rf ms   No 254 0,28 s| 55 s   Lr 257 0,66 s   Db 261 1,8 s   Bh ms         Bh s   Db s   Lr 259 5,4 s   Md m Rf 268

H. Backe A. Dretzke P. Kunz W. Lauth Institut für Kernphysik Universität Mainz Germany S. Fritzsche Fachbereich Physik Universität Kassel Germany Ludwig-Maximilians-Universität München Maier-Leibnitz-Labor Germany D. Habs, V. Kolhinen, M. Laatiaoui, J. Neumayr, M.Sewtz, P. Thirolf SHIPTRAP-Collaboration