Qimiao Si Rice University KIAS, Oct 29, 2005 Heavy fermion metals: Global phase diagram, local quantum criticality, and experiments.

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

Unveiling the quantum critical point of an Ising chain Shiyan Li Fudan University Workshop on “Heavy Fermions and Quantum Phase Transitions” November 2012,
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Quantum Griffiths Phases of Correlated Electrons Collaborators: Eric Adrade (Campinas) Matthew Case (FSU) Eduardo Miranda (Campinas) REVIEW: Reports on.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Antoine Georges Olivier Parcollet Nick Read Subir Sachdev Jinwu Ye Mean field theories of quantum spin glasses Talk online: Sachdev.
Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm
Magnetism in systems of ultracold atoms: New problems of quantum many-body dynamics E. Altman (Weizmann), P. Barmettler (Frieburg), V. Gritsev (Harvard,
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Prelude: Quantum phase transitions in correlated metals SC NFL.
Quantum Criticality and Fractionalized Phases. Discussion Leader :G. Kotliar Grodon Research Conference on Correlated Electrons 2004.
Glassy dynamics of electrons near the metal-insulator transition in two dimensions Acknowledgments: NSF DMR , DMR , NHMFL; IBM-samples; V.
Quantum Criticality. Condensed Matter Physics (Lee) Complexity causes new physics Range for CMP.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
THE STATE UNIVERSITY OF NEW JERSEY RUTGERS Studies of Antiferromagnetic Spin Fluctuations in Heavy Fermion Systems. G. Kotliar Rutgers University. Collaborators:
Conserving Schwinger boson approach for the fully- screened infinite U Anderson Model Eran Lebanon Rutgers University with Piers Coleman, Jerome Rech,
Magnetic quantum criticality Transparencies online at Subir Sachdev.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Philipp Gegenwart Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany Experimental Tutorial on Quantum Criticality in strongly correlated.
Lecture schedule October 3 – 7, 2011  #1 Kondo effect  #2 Spin glasses  #3 Giant magnetoresistance  #4 Magnetoelectrics and multiferroics  #5 High.
Huiqiu Yuan Department of Physics, Zhejiang University, CHINA Field-induced Fermi surface reconstruction near the magnetic quantum critical point in CeRhIn.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
2D-MIT as a Wigner-Mott Transition Collaborators: John Janik (FSU) Darko Tanaskovic (FSU) Carol Aguiar (FSU, Rutgers) Eduardo Miranda (Campinas) Gabi.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Fermionic quantum criticality and the fractal nodal surface Jan Zaanen & Frank Krüger.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Heavy Fermion Superconductivity: Competition and Cooperation of Spin Fluctuations and Valence Fluctuations K. Miyake KISOKO, Osaka University KISOKO =
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
2013 Hangzhou Workshop on Quantum Matter, April 22, 2013
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
History of superconductivity
Self-generated instability of a ferromagnetic quantum-critical point
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Electronic Griffiths phases and dissipative spin liquids
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Quantum Criticality in Magnetic Single-Electron Transistors T p Physics of non-Fermi-liquid Metals Qimiao Si, Rice University, DMR Quantum criticality.
Lecture schedule October 3 – 7, 2011
The quest to discover the self-organizing principles that govern collective behavior in matter is a new frontier, A New Frontier ELEMENTS BINARYTERTIARY.
Breakdown of the Kondo effect at an antiferromagnetic instability Outline HF quantum critical points (QCPs) Kondo breakdown QCP in YbRh 2 Si 2 Superconductivity.
Frustrated magnetism in 2D Collin Broholm Johns Hopkins University & NIST  Introduction Two types of antiferromagnets Experimental tools  Frustrated.
10/24/01PPHMF-IV1 Spinons, Solitons, and Breathers in Quasi-one-dimensional Magnets Frustrated Magnetism & Heavy Fermions Collin Broholm Johns Hopkins.
Deconfined quantum criticality T. Senthil (MIT) P. Ghaemi,P. Nikolic, M. Levin (MIT) M. Hermele (UCSB) O. Motrunich (KITP), A. Vishwanath (MIT) L. Balents,
Qimiao Si Rice University
T. Senthil (MIT) Subir Sachdev Matthias Vojta (Karlsruhe) Quantum phases and critical points of correlated metals Transparencies online at
DISORDER AND INTERACTION: GROUND STATE PROPERTIES of the DISORDERED HUBBARD MODEL In collaboration with : Prof. Michele Fabrizio and Dr. Federico Becca.
Quantum criticality: where are we and where are we going ?
Review on quantum criticality in metals and beyond
Some open questions from this conference/workshop
Quantum phases and critical points of correlated metals
Quantum phases and critical points of correlated metals
Quantum phase transitions and the Luttinger theorem.
How might a Fermi surface die?
Killing the Fermi surface: Some ideas on the strange metal, Fermi arcs and other phenomena T. Senthil (MIT) TS, ``Critical fermi surfaces and non-fermi.
Qimiao Si Rice University
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

Qimiao Si Rice University KIAS, Oct 29, 2005 Heavy fermion metals: Global phase diagram, local quantum criticality, and experiments

S. PaschenP. GegenwartR. Küchler T. LühmannS. WirthN. Oeschler T. CichorekK. NeumaierO. Tegus O. TrovarelliC. GeibelJ. A. Mydosh F. SteglichP. Coleman Lijun Zhu, Stefan Kirchner, Tae-Ho Park, Eugene Pivovarov, (Rice University) Silvio Rabello, J. L. Smith Kevin Ingersent (Univ. of Florida) Daniel Grempel (CEA-Saclay) Jianxin Zhu (Los Alamos)

Quantum Critical Point QCP: existence itself is conceptually simple… … but, can be elusive (required parameter tuning beyond practical range, order hidden, too many competing phases, 1 st order along the physical axis, etc.) and, the nature of the QCP seems to be exceedingly rich.

Insulating Ising magnet –LiHoF 4 : transverse field Ising model Heavy fermion magnetic metals ‘‘Simple’’ magnetic metals –Cr 1-x V x, Sr 3 Ru 2 O 7, MnSi (1 st order, but …) … High Tc superconductors (?) Mott transition –V 2 O 3, …: QCP? (magnetic ordering intervenes at low T!) –cold atoms: 2 nd order? Frustrated magnets (?) Field-driven BEC of magnons Materials (possibly) showing Quantum Criticality

Metal-insulator transition in 3D Si:P, … –Many theoretical questions remain (Finkelstein scaling theory? local moments?...) MIT in 2DEG of Si-MOSFETs,... (?) –Phase diagram? (Experiments seeing a genuine metal phase?) Superconductor-insulator transitions in films –Phase diagram? (Intermediate metal?) QH-QH and QH-Insulator transitions –2 nd order? Materials (possibly) showing Quantum Criticality

Early part of the heavy fermion field Heavy electron mass Unconventional superconductivity Kondo screening  Kondo resonances  – Fermi liquid of heavy quasiparticles On the theory front: Single-impurity: Anderson, Wilson, Nozières, Andrei, Wiegmann, Coleman, Read & Newns, … Lattice: Varma, Doniach, Auerbach & Levin, Millis & Lee, Rice & Ueda, …

Past decade of the heavy fermion field Non-Fermi Liquid Behavior Quantum Criticality New focus, perhaps due to cross-fertilization w/ high Tc & other correlated systems

Heavy fermions near a magnetic QCP: CeCu 6-x Au x H. v. Löhneysen et al, PRL 1994 AF Metal TNTN TNTN

Heavy fermions near a magnetic QCP: CeCu 6-x Au x YbRh 2 Si 2 H. v. Löhneysen et al, PRL 1994 J. Custers et al, Nature 2003 CePd 2 Si 2 N. Mathur et al, Nature 1998 AF Metal TNTN TNTN TNTN Supercond. Linear resistivity

Heavy fermions near a magnetic QCP: –YbRh 2 Si easy-plane spin-anisotropy; T K 0 ≈ 25 K –Ce(Cu 1-x Au x ) 6 Ising anisotropy; T K 0 ≈ 6 K –CePd 2 Si 2, CeIn 3 ( first order?--NQR ), CeNi 2 Ge 2, CeCu 2 Si 2 –YbAgGe [frustrated (hexagonal) lattice] –CeMIn 5, –URu 2 Si 2 (?)

Kondo Lattice Model I: RKKY interaction; AF G=I nnn /I nn etc.

Kondo Lattice Model Bandwidth W Kondo coupling J K I: RKKY interaction; AF G=I nnn /I nn etc.

Kondo Lattice Model Bandwidth W Kondo coupling J K Fixed I and W with I<<W, varying G and J K I: RKKY interaction; AF G=I nnn /I nn etc.

Kondo lattices JKJK G G ~ frustration, reduced dimensionality, etc. Local moment magnetism, I rkky Kondo coupling J K Bandwidth W

JKJK G J K >>W>>I rkky

xN site tightly bound local singlets (cf. If x were =1, Kondo insulator) (1-x)N site lone moments:

J K >>W>>I rkky xN site tightly bound local singlets (cf. If x were =1, Kondo insulator) (1-x)N site lone moments: –projection: –(1-x)N site holes with U=∞

J K >>W>>I rkky xN site tightly bound local singlets (cf. If x were =1, Kondo insulator) (1-x)N site lone moments: –projection: –(1-x)N site holes with U=∞ Luttinger’s theorem: (1-x) holes/site in the Fermi surface (1+x) electrons/site ---- Large Fermi surface!

JKJK G PM L paramagnet, w/ Kondo screening J K >>W>>I rkky

JKJK G J K <<I rkky <<W Local moment magnetism, I rkky

J K <<I rkky <<W With Ising anisotropy, the magnetic spectrum of the local moment component is gapped. J K is irrelevant!

J K <<I rkky <<W With Ising anisotropy, the magnetic spectrum of the local moment component is gapped. J K is irrelevant! Local moments stay charge neutral, and do not contribute to the electronic excitations. Fermi surface is small

JKJK G AF S QS, J.-X. Zhu, & D. Grempel, cond-mat / J K <<I rkky <<W Néel, without Kondo screening

JKJK G AF S PM L AF L QS, J.-X. Zhu, & D. Grempel, cond-mat / I II Global phase diagram

Type I transition Type II transition Hertz fixed point for T=0 SDW transition Second order if Destruction of Kondo screening at the magnetic QCP

Local Quantum Critical Point Fluctuations of the magnetic order parameter are slow at the magnetic QCP The slow magnetic fluctuations decohere the Kondo screening Kondo effect is critical, which is in addition to the critical fluctuations of magnetic order parameter

Local Quantum Critical Point QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001) Anomalous spin dynamics Destruction of Kondo effect (E loc *  0) at the QCP

Nature of the phases TNTN T 2 resistivity on both sides of the QCP

Nature of the phases (cont’d) TNTN Small Fermi surface in the AF metal phase TNTN S. Araki, R. Settai, T. C. Kobayashi, H. Harima, & Y. Onuki, Phys Rev. B 64, (2001) CeRh 2 Si 2

Localization of f-electrons –Reconstruction of the Fermi surface across  QCP –m*  ∞ over the entire Fermi surface as    QCP Anomalous spin dynamics. Destruction of Kondo effect –Non-Fermi liquid excitations part of the quantum-critical spectrum. In what sense is the QCP local?

CeCu 6-x Au x (x c ≈0.01) H. v. Löhneysen et al, PRL 1994 AF Metal TNTN TNTN

Dynamical and Static Susceptibilities in CeCu 5.9 Au 0.1 A. Schröder et al., Nature ’00; PRL ’98; O. Stockert, H. v. Löhneysen, A. Rosch, N. Pyka, & M. Loewenhaupt, PRL ’98 E/T scaling Fractional exponent  =0.75  =0.75 `everywhere’ in q. q=Q E/T q=Qq=Q q=0 INS and M/H T /  (q)......

Dynamics of the quantum critical CeCu 5.9 Au 0.1 Frequency and temperature dependences of the dynamical spin susceptibility: –an anomalous exponent  < 1 –  /T scaling implying non-Gaussian fixed point The anomalous exponent  is seen essentially `everywhere’ in the momentum space

O. Stockert, H. v. Löhneysen, A. Rosch, N. Pyka, & M. Loewenhaupt, Phys. Rev. Lett. ’98

TNTN Ce(Ru 1-x Rh x ) 2 Si 2 (x c ≈0.04) H. Kadowaki, Y. Tabata, M. Sato, N. Aso, S. Raymond, & S. Kawarazaki, cond-mat/

Ce(Ru 1-x Rh x ) 2 Si 2 H. Kadowaki, Y. Tabata, M. Sato, N. Aso, S. Raymond, & S. Kawarazaki, cond-mat/ TNTN  0 =350mJ/K 2 for x=0 C/T=  0 -a T 1/2

Localization of f-electrons –Reconstruction of the Fermi surface across  QCP –m*  ∞ over the entire Fermi surface as    QCP Anomalous spin dynamics everywhere in q. Destruction of Kondo effect –Non-Fermi liquid excitations part of the quantum-critical spectrum. In what sense is the QCP local?

Hall Effect in YbRh 2 Si 2 : probing the Fermi-surface change TNTN Linear resistivity

S. Paschen, T. Lühmann, S. Wirth, P.Gegenwart, O.Trovarelli, C. Geibel, F. Steglich, P.Coleman, & QS, Nature 432, 881 (2004) Hall Effect in YbRh 2 Si 2

S. Paschen, T. Lühmann, S. Wirth, P.Gegenwart, O.Trovarelli, C. Geibel, F. Steglich, P.Coleman, & QS, Nature 432, 881 (2004) Hall Effect in YbRh 2 Si 2

Finite T crossover width  T 0.5±0.1 T=0 (extrapolation): sharp QCP Hall Effect in YbRh 2 Si 2 S. Paschen, T. Lühmann, S. Wirth, P.Gegenwart, O.Trovarelli, C. Geibel, F. Steglich, P.Coleman, & QS, Nature 432, 881 (2004)

Finite T crossover width  T 0.5±0.1 T=0 (extrapolation): sharp QCP Hall Effect in YbRh 2 Si 2 S. Paschen, T. Lühmann, S. Wirth, P.Gegenwart, O.Trovarelli, C. Geibel, F. Steglich, P.Coleman, & QS, Nature 432, 881 (2004)

H. Shishido, R. Settai, H. Harima, & Y. Onuki, JPSJ 74, 1103 (2005) _ dHvA in CeRhIn 5

Divergence of the Grüneisen Ratio L. Zhu, M. Garst, A. Rosch, and QS, Phys. Rev. Lett. ’03 with

Divergence of the Grüneisen Ratio L. Zhu, M. Garst, A. Rosch, and QS, Phys. Rev. Lett. ’03 R. Küchler et al., Phys. Rev. Lett. ’03 with

LQCP: x loc ≈ 0.66 to 2 nd order in ε-expansion for the XY case Cf. AF-SDW: x = 1 / z = 1 R. Küchler et al., Phys. Rev. Lett. ’03 Grüneisen exponent in Ge-doped YbRh 2 Si 2

Spin-glass QCP in heavy fermions? JKJK G paramagnet, w/ Kondo screening SG, without Kondo screening Type I: interacting f.p. –UPd x Cu 5-x (?):  /T scaling (M. Aronson et al ’95; D. MacLaughlin et al) –Sc 1-x U x Pd 3 (?):  /T scaling (P. Dai et al’04) Type II: Gaussian f.p. –Fluctuation of the spin glass order parameter (Sachdev et al, ’95; Sengupta and Georges ‘95) I II

Spin-glass QCP in heavy fermions? S. Wilson, P. Dai et al, Phys. Rev. Lett. ’05 D. Gajewski, R. Chau, and M. B. Maple, Phys. Rev. B (’00)

SUMMARY Global phase diagram of the magnetic heavy fermion metals Two types of quantum critical metals –T=0 SDW transition (Gaussian) –Locally quantum-critical: destruction of Kondo effect exactly at the magnetic QCP (interacting) Evidence from magnetic dynamics, Fermi surface evolution, and thermodynamic ratio. Relevance to other strongly correlated metals?